[105]. Оглядываясь на историю точного естествознания, можно, пожалуй, утверждать, что правильное описание явлений природы сложилось в напряженной противоположности обоих подходов. Чистая математическая спекуляция бесплодна, если в своей игре со всевозможными формами она не находит пути назад, к тем весьма немногим формам, из которых реально построена природа. Но и чистая эмпирия бесплодна, поскольку бесконечные, лишенные внутренней связи таблицы в конечном счете душат ее. Решающее продвижение вперед может быть результатом только напряженного взаимодействия между обилием фактических данных и математическими формами, потенциально им соответствующими.
Но античность не смогла выдержать этого напряжения, и оба пути — к пониманию и к прекрасному — надолго разошлись. Значение прекрасного для понимания природы стало вновь очевидно лишь после того, как в начале Нового времени от Аристотеля опять обратились к Платону. И только благодаря этому повороту открылась вся плодотворность пифагорейско-платоновского образа мыслей.
С предельной ясностью это показывают приписываемые Галилею знаменитые опыты с падением тел на «падающей» башне в Пизе. Не обращая внимания на авторитет Аристотеля, Галилей начал с тщательных наблюдении, однако, следуя учению Пифагора и Платона, он пытался найти математические формы, соответствующие эмпирически полученным фактам, и таким образом установил свои законы падения. Но чтобы распознать в явлениях красоту математических форм, он должен был — и это весьма существенно — идеализировать факты или же, как критически выразился бы Аристотель, исказить их. Аристотель учил, что все движущиеся тела, если на них не действуют внешние силы, в конце концов приходят в состояния покоя, и это соответствовало обыденному опыту. Галилей утверждает, напротив, что в отсутствии внешних сил тела сохраняют состояние равномерного движения. Галилей мог отважиться на подобное искажение фактов, сославшись на то, что движущимся телам всегда оказывает сопротивление трение и в действительности движение длится тем большее время, чем лучше удается изолировать его от действия силы трения. Искажая и идеализируя таким способом факты, он получил простой математический закон, и это было началом точного естествознания Нового времени.
Несколькими годами позже Кеплеру в результате тщательных наблюдений над траекториями движения планет удалось открыть новые математические формы и сформулировать три знаменитых кеплеровских закона. Сколь близкими себе ощущал Кеплер в процессе этих открытий древние пути пифагорейской мысли, до какой степени руководствовался он в своих формулировках красотой открывшихся взаимосвязей, следует уже из того, что он сравнивал вращение планет вокруг Солнца с колебаниями струны и говорил о гармоническом созвучии их орбит, о гармонии сфер. Об этом свидетельствует, наконец, тот ликующий гимн, которым он разражается в заключительных строках своего труда о гармонии мира: «Благодарю тебя, Господи, творец наш, за то, что ты дал мне созерцать красоту творения рук твоих». Кеплера глубоко поразило то, что он натолкнулся здесь на взаимосвязь, в полном смысле слова центральную, не выдуманную человеком, исполненную наивысшей красоты, — взаимосвязь, познать которую впервые было предопределено именно ему. Несколько десятилетий спустя Исаак Ньютон в Англии полностью раскрыл эту взаимосвязь и детально описал ее в своем великом произведении «Philosophiae naturalis principia mathematica». Тем самым путь точного естествознания был предначертан почти на два столетия вперед.
Но идет ли здесь речь только о познании или также и о прекрасном? А если и о прекрасном, то какую роль играло оно в раскрытии этой взаимосвязи? Вспомним снова античное определение: «Красота есть правильное согласование частей друг с другом и с целым». Нет нужды объяснять, что этот критерий в высшей степени подходит к такому стройному зданию, каковым является ньютоновская механика. Части суть отдельные механические процессы — как те, которые мы тщательно изолируем с помощью специальных устройств, так и те, которые протекают перед нами в пестрой игре явлений и не могут быть распутаны. А целое — единый формальный принцип, которому подчиняются эти процессы и который был зафиксирован Ньютоном в виде простой системы аксиом. Единство и простота — это, конечно, не одно и то же. Но тот факт, что в подобной теории многому противопоставляется единое, что многое в ней объединяется, уже сам по себе приводит к тому, что теория эта воспринимается нами одновременно и как простая, и как прекрасная.
Значение прекрасного для отыскания истины признавалось и особо отмечалось во все времени. Латинский девиз «Simplex sigillum veri» («Простота — печать истины») большими буквами начертан на физической аудитории Геттингенского университета как завет тем, кто хочет открыть новое. А другой девиз, «Pulchritudo splendor veritatis» («Красота — сияние истины»), можно понять также и в том смысле, что исследователь узнает истину прежде всего по этому сиянию, по излучаемому ею свечению.
Подобный проблеск великой взаимосвязи в истории точного естествознания еще дважды явился верным сигналом существенного прогресса. Я имею в виду два события в физике нашего столетия: возникновение теории относительности и квантовой теории. В обоих случаях после многолетних тщетных усилий обнаружилась взаимосвязь, хотя и весьма трудно представимая, но тем не менее по сути своей она представлялась таковой до самого последнего времени, и тогда запутанное нагромождение частностей почти внезапно обрело упорядоченный вид. Завершенность и абстрактная красота этой взаимосвязи делали ее непосредственно убедительной — убедительной для всех тех, кто понимал ее абстрактный язык и мог изъясняться на нем.
Не будем, впрочем, прослеживать дальше исторический ход событий, а спросим лучше напрямик: что здесь просвечивает? Как получается, что этот проблеск прекрасного в точном естествознании позволяет распознать великую взаимосвязь еще до ее детального понимания, до того, как она может быть рационально доказана? В чем заключается сила этого света и какое воздействие оказывает он на дальнейшее развитие науки?
Здесь в первую очередь следовало бы, наверное, вспомнить один феномен, который можно назвать развертыванием абстрактных структур. Его можно пояснить на примере теории чисел, о которой мы уже говорили вначале. Можно, впрочем, указать сходные процессы и в развитии искусства. Для математического обоснования арифметики, учения о числах, достаточно немногих простых аксиом, которые, собственно, всего лишь точно определяют, что значит считать. Тем не менее в этих немногих аксиомах уже заложена вся полнота форм, которые открывались сознанию математиков лишь в течение длительной истории, — учение о простых числах, о квадратичных вычетах, теория сравнимости и т. д. Можно сказать, что заложенные в числе абстрактные структуры зримо развернулись только в процессе развития математики, что они породили множество положений и зависимостей, которые составляют содержание сложной науки — теории чисел. Но сходным образом и в истоках художественного стиля, скажем в архитектуре, тоже лежат некоторые первичные простые формы, как, например, полукруг и квадрат в романской архитектуре. С течением времени из этих основных форм возникают новые, усложненные и измененные формы, которые, однако, можно считать как бы вариациями на ту же тему. В результате из основных структур развертывается новый образ, новый стиль строительного искусства. Возникает ощущение, что по этим исходным формам можно с самого начала судить о возможностях их дальнейшего развития. В противном случае было бы трудно понять то обстоятельство, что многие одаренные художники очень быстро решаются использовать эти новые возможности.
Подобное развертывание фундаментальных абстрактных структур, несомненно, имеет место и в перечисленных мною случаях из истории точного естествознания. Рост ньютоновской механики, развитие все новых и новых ее ответвлений продолжались до середины прошлого столетия. В нашем столетии мы пережили нечто подобное в теории относительности и квантовой механике, рост которых еще не закончен.
Как в науке, так и в искусстве этот процесс имеет, кроме того, еще и важную социальную и этическую сторону, потому что в нем может активно участвовать много людей. В средние века, когда строились кафедральные соборы, в их строительстве было занято много мастеров и ремесленников. Они преисполнены определенным представлением о красоте, заложенной в исходных формах, и задача их состояла в том, чтобы, действуя в духе этих форм, точно и тщательно выполнить свою работу. Подобным же образом в течение двух столетий после ньютоновского открытия задача многих математиков, физиков и техников состояла в том, чтобы решать ньютоновским методом отдельные механические проблемы, ставить эксперименты или разрабатывать технические применения, и здесь тоже постоянно требовалась предельная тщательность, чтобы достигнуть всего, что возможно, в рамках ньютоновской механики. Обобщая, можно, пожалуй, сказать, что основополагающие структуры, в данном случае ньютоновская механика, устанавливают направляющие линии или даже ценностные масштабы, позволяющие объективно судить о том, хорошо или плохо была решена поставленная задача. Здесь выдвигаются точные требования; каждый, внося свой небольшой вклад, может содействовать достижению значительной цели, о ценности такого вклада можно судить объективно. Вот почему большой круг участвующих в этом процессе людей испытывают чувство удовлетворения. И вот почему также не следует недооценивать этического значения техники для нашего времени.
Например, развитие науки и техники привело к идее самолета. Каждый инженер, конструирующий отдельные узлы самолета, рабочий, который их изготовляет, знают, что в их работе важна предельная точность и тщательность, что от ее надежности зависит, быть может, даже жизнь многих людей. Поэтому они испытывают чувство гордости от сознания хорошо исполненной работы и радуются вместе с нами, когда видят, что в самолете определенная техническая цель достигнута точно рассчитанными средствами. Красота, гласит уже не раз цитированное античное определение, есть правильное согласование частей друг с другом и с целым — и хороший самолет должен удовлетворять этому требованию.