А вот Фрэнк Мосс, биофизик из Миссурийского университета в Сент-Луисе, решил в 1993 году поисследовать речных раков. Мосс давно подозревал, что животные используют стохастический резонанс, дабы увеличить свои шансы при размножении. Его очень впечатлили находки Мизенбока.
Одна из работ Мосса стала первой, где удалось показать, что привнесенный извне шум может действовать в рамках стохастического резонанса. Мосс изучал веслоносых рыб, которые отыскивают пищу, пользуясь электросенсорами в своем рыле, чтобы улавливать слабые электрические сигналы, испускаемые планктоном, их обычной добычей. Мосс поместил такую рыбу в резервуар с водой, содержащий планктон и два электрода, которые генерировали шум в форме случайно варьирующегося электрического поля. Замерив эффект шума, он обнаружил: существует некоторая промежуточная амплитуда, при которой охота рыбы на планктон гораздо успешнее.
Оптимальность этого успеха при «среднем» уровне шума – одна из характерных особенностей стохастического резонанса: если шума слишком мало, сигнал не достигает порогового значения, а если шума слишком много, сигнал в нем попросту тонет. Таким образом, соотношение уровня шума и уровня пользы от этого шума можно в данном случае изобразить как перевернутую вверх ногами букву U.
Затем Мосс решил заняться дафниями – мелкими водяными рачками. Он полагал, что эти изыскания помогут ему получить новые доводы в пользу существования стохастического резонанса, порождаемого самим организмом.
Дафния кормится характерным образом: последовательность ее движений при этом – прыжок, пауза, поворот под углом и еще один прыжок. Углы поворота различны и невооруженному глазу кажутся случайными.
Однако Мосс считал иначе. Вместе с коллегами он записал на видео поведение пяти видов дафний, добывавших себе пищу в мелководном аквариуме, и замерил сотни углов поворота. Построив частотное распределение для этих углов, ученые обнаружили, что оно не носит совершенно случайный характер: некоторые углы наблюдались заметно чаще, чем другие. Общее распределение можно математически описать, применив параметр, именуемый «интенсивностью шума». Это мера его случайности («шумности»).
Затем ученые построили компьютерные модели кормящихся дафний, основываясь на разных интенсивностях шума. Наиболее выгодной стратегией сбора пищи стала именно та, где уровень интенсивности шума совпадал с тем, который зафиксировали, наблюдая реальных дафний. Более низкая или более высокая интенсивность шума уменьшала успешность охоты – в полном согласии с перевернутой U для стохастического резонанса. Пока никто не знает, каким образом дафнии генерируют именно такое распределение углов поворота, но команда Мосса заявляет, что это пример стохастического резонанса в действии, а кроме того, что это распределение порождается где-то в организме дафнии – возможно, в ее мозгу. По мнению Мосса, оптимальная интенсивность шума должна являться продуктом естественного отбора, поскольку дафния, которая пользуется оптимальной интенсивностью шума, будет находить больше пищи, тем самым максимизируя свою приспособленность к условиям среды обитания.
Однако идея, согласно которой биологические системы используют генерируемые ими же шумы, по-прежнему вызывает массу вопросов. Вот один из главных: является ли истинным шумом то, что порождается локальными нейронами дрозофилы? Барт Коско, инженер-электротехник из Университета Южной Калифорнии в Лос-Анджелесе, автор книги «Шум» (2006), заявляет: он в этом отнюдь не убежден.
Шум имеет строгое математическое определение, и то, что в сложной биологической системе выглядит как шум, обычно оказывается просто утечкой сигнала. «Необходимо вычленить источник этого «шума» и узнать, действительно ли он обладает статистическими характеристиками шума», – указывает Коско. Если выяснится, что это не «истинный шум», тогда, по определению, вы имеете дело не со стохастическим резонансом.
Нейробиолог Георги Бузаки из Нью-Йоркского университета идет еще дальше. Он заявляет: если нечто усиливает поступающие в мозг слабые сигналы, позволяя им преодолевать пороговые значения, то это «нечто» – вряд ли шум. «Генерирование шума – процесс весьма дорогостоящий, – подчеркивает ученый. – Хорошая система попросту не может себе этого позволить. А мозг мы все-таки считаем хорошей системой».
Бузаки согласен с Мизенбоком в том, что касается возможности существования «шумоподобного» сигнала, модулирующего мозговую активность у млекопитающих. Но, по мнению Бузаки, для этого не нужны специальные схемы, вырабатывающие шум. Он напоминает о спонтанной нейронной активности, свойственной всем участкам мозга.
Нейроны способны на два типа активности – спонтанную и наведенную (индуцированную). Первая возникает независимо от внешних раздражителей, тогда как вторая служит откликом на них. Спонтанная активность вызывает интерес у нейробиологов, поскольку может дать представление о механизмах усиления умственной активности человеческого мозга. Спонтанная активность может распространяться через нейронные сети, с краткими периодами синхронной активации нейронов со скоростью до сорока «импульсных пиков» в секунду. Предполагалось, в частности, что так называемые гамма-волны могут связывать воедино различные когнитивные процессы, тем самым порождая восприятие.
По мнению Бузаки, поступающие слабые сигналы могли бы путешествовать «на загривке» у этих спонтанных волн активности и благодаря этому преодолевать пороговые значения. Он утверждает, что это стало бы более эффективным (с точки зрения затрат) способом усиления слабого сигнала, поскольку спонтанная активность требует меньше энергии.
Разумеется, есть одно ключевое сходство между этими двумя возможностями: обе подразумевают, что один сигнал позволяет другому преодолеть порог. «Принцип один и тот же», – подчеркивает Мизенбок. Однако здесь очень важны конкретные подробности – как для понимания основ работы мозга, так и для того, чтобы в дальнейшем, быть может, использовать случайный шум и феномен стохастического резонанса при разработке сенсорных устройств для помощи людям с ограниченными возможностями – скажем, при создании сетчаточных имплантов.
Пока мы еще не сумели выяснить, что же создал естественный отбор – мозг со встроенным генератором случайного шума или же просто мозг, способный заимствовать какой-то иной нейронный сигнал, чтобы использовать его как шум. Как бы там ни было, похоже, мозг дрозофилы не может работать без некоторого привнесенного случайного шума. То же самое, по-видимому, относится и к нашему собственному мозгу.
Обезьяна случайности
Есть еще один способ извлечь эволюционные преимущества из случайности: думайте непредсказуемо, ведите себя непредсказуемо. Возможно, в этом и коренится творческий потенциал человека. Слово Дилану Эвансу.
В каждом из нас есть что-то от греческих богов. Если конкретнее – от Протея, которому, как известно, удавалось перехитрить врагов, постоянно меняя обличье. Может, человек и не так далеко зашел в смысле способности к метаморфозам, но когда нужно сбить с толку конкурента, наш талант по части непредсказуемого поведения не знает себе равных.
Удирая от лисы, заяц петляет хаотическими зигзагами, а не устремляется к укрытию по кратчайшему пути. Убегая от хищника или охотясь за добычей, животные используют всевозможные формы случайного поведения. Но лишь человек полагается на непредсказуемость как на орудие в соперничестве с себе подобными, будь то футбол или международная дипломатия.
Ученые долго игнорировали такое поведение человека, но затем все-таки осознали один удивительный факт. Мало того, что мы способны вести себя самым случайным образом: такие наши действия далеко не бессмысленны. Возможно, непредсказуемое поведение возникло в ходе эволюции как способ держать наших конкурентов в неведении. Не исключено, что это объясняет некоторые особенности нашего поведения – скажем, внезапные перепады настроения. К тому же это добавляет еще одно измерение к нашему пониманию человеческого разума. Как ни поразительно, именно наше высокоразвитое чувство случайного, возможно, и стало той искрой, которая позволила человекообразной обезьяне, адаптировавшейся к жизни в саванне, доэволюционировать до существа, расписывающего Сикстинскую капеллу, конструирующего космические корабли и придумывающего рекламные слоганы.
Британский биолог Майкл Чанс в 1959 году, еще учась в Бирмингемском университете, придумал термин «протеическое поведение». Но эволюционное объяснение этого феномена появилось гораздо позже. Все началось с наблюдения, сделанного двумя британскими этологами, Питером Драйвером и Дэвидом Хамфрисом. Они подметили, что у многих животных в ходе эволюции развиваются когнитивные способности, позволяющие им предсказывать действия своих конкурентов или своей добычи. Естественный отбор затем отдает предпочтение механизмам, которые делают эти поступки менее предсказуемыми, так что у врагов развиваются еще более эффективные предсказательные способности. И так далее, и так далее: на лицо этакая эволюционная гонка вооружений.
Есть два очевидных способа затруднить другим прогнозирование ваших действий: скрыть свои истинные намерения и выдавать ложные сигналы. Однако оба метода уязвимы, поскольку ваш враг может в ходе эволюции развивать у себя все более совершенные механизмы восприятия. А значит, эти стратегии не являются эволюционно стабильными. Иными словами, гонка вооружений продолжается. Во многих конфликтах единственный способ избежать дальнейшей эскалации такого рода – применить то, что специалисты по теории игр называют «смешанной стратегией», при которой решения принимаются на вероятностной основе. Такие решения не предугадает враг, обладающий даже самым развитым талантом предсказателя.
Командиры подводных лодок во время Второй мировой войны пользовались этим подходом и часто бросали кости, чтобы выбирать случайные маршруты при патрулировании, тем самым более эффективно избегая противолодочных кораблей. В природе взаимодействие между врагами нередко протекает сходным образом. К примеру, рыбы песчанки обычно реагируют на близкое присутствие хищников, сбиваясь в косяк, и затем стайка пытается уйти от врага, развивая высокую скорость. Но если угроза нападения возникла в узком водоеме, песчанки ведут себя совершенно иначе: стая рыб рассыпается, и каждая рыбка начинает беспорядочно сновать во всевозможных направлениях, пытаясь сбить хищника с толку.