«Неонатологов очень воодушевило появление PhysiScore», – отмечает Пенн. Как врач, она особенно довольна способностью систем ИИ одновременно работать с сотнями или даже с тысячами переменных в ходе принятия решения. Возможно, это позволит им даже превзойти своих конкурентов-людей. Пенн не скрывает своего восхищения: «Эти приборы умеют осмысливать сигналы, которые мы, врачи и медсестры, даже не можем увидеть».
Вот почему Домингос так склонен доверять автоматизированной медицинской диагностике. Одна из самых известных систем подобного рода – Quick Medical Reference, Decision Theoretic, (QMR-DT, Теоретическая система быстрого принятия обоснованных медицинских решений), байесианская сеть, умеющая строить модели для сотен наиболее серьезных болезней и тысяч связанных с ними симптомов. Цель создателей системы – научить ее выдавать вероятностное распределение для недугов, основываясь на реальных симптомах, наблюдаемых в том или ином случае. Разработчики провели тонкую подстройку алгоритмов вывода QMR-DT под определенные заболевания и обучили систему использовать историю болезни пациентов. «Проводили сравнение работы этих систем с работой врачей-людей. Системы обычно работают лучше, – говорит Домингос. – У людей очень непоследовательные суждения, даже когда они ставят диагнозы. Такие системы не применяются шире лишь из-за того, что медики не хотят расставаться с интересными элементами своей работы».
Подобные технологии ИИ позволили добиться успехов и в других сферах. Один из наиболее впечатляющих примеров – компьютерное распознавание речи, процесс, который прошел путь от смешных устройств, вечно делающих ошибки, до систем, работающих с поразительной точностью. Сегодня врач может диктовать сведения о пациенте компьютеру, который при помощи программы распознавания речи преобразует эти звуки в электронные документы, там самым уменьшив необходимость записывать информацию от руки. Машинные переводы с одного языка на другой тоже постепенно начинают повторять успехи новейших систем распознавания речи.
Однако по-прежнему существуют области, где такая работа сопряжена с большими трудностями. Пример – научить робота понимать, что видит его камера. Решение этой проблемы позволит сделать огромный шаг на пути к созданию робота, свободно и самостоятельно ориентирующегося в пространстве.
Помимо разработки гибких и быстрых алгоритмов вывода, разработчики должны также усовершенствовать способность систем ИИ к обучению как на основе уже известных сведений, так и при изучении реального мира с помощью сенсоров. В наши дни машинное обучение, как правило, осуществляется посредством алгоритмов, специально приспособленных под конкретные задачи, и тщательно выстроенных наборов данных, предназначенных именно для того, чтобы научить систему делать что-то конкретное. «Нам хотелось бы иметь гораздо более гибкие и подвижные системы, которые можно было бы поместить в реальный мир, где они обучались бы на основе широкого диапазона поступающей информации», – говорит Коллер.
Конечная цель создателей ИИ (как и всех подобных конструкторов) – сделать машины, которые воссоздадут человеческий разум, но так, чтобы мы полностью понимали, каким образом они это делают. «Пока это, скорее всего, дело далекого будущего. Но потенциально это не менее опасно, чем отыскание внеземной жизни, – предупреждает Тененбаум. – Человекоподобный ИИ – широкий термин, он включает в себя и грядущий идеал. Сейчас у нас вполне скромные амбиции. Мы будем счастливы, если сумеем создать зрительную систему, которая сможет бросить единственный взгляд на происходящее перед ней и рассказать нам, что она видит, подобно тому, как это проделывает человек».
Сила единицы
Время от времени мир загорается той или иной идеей. Закон Бенфорда – одна из них. Нужно лишь подсчитать количество разных цифр в наборе чисел, чтобы узнать, насколько случайно они распределены. Как показывает Роберт Мэтьюз, эта простенькая идея не раз отправляла людей за решетку. Если вы хотите нарушить закон, пусть даже и Бенфорда, имейте в виду: вас ждут большие неприятности.
Когда Алекс попросил своего зятя помочь ему с курсовой, он и понятия не имел, какую мрачную тайну ему предстоит открыть. Изучая бухгалтерское дело в Университете Святой Марии в Галифаксе (Новая Шотландия), Алекс столкнулся с необходимостью проанализировать какие-нибудь реальные коммерческие цифры. И магазин бытовой техники, принадлежащий зятю, показался ему вполне очевидным источником таких данных.
Бегло проглядывая сведения о продажах за год, Алекс не обнаружил в них ничего особенно странного, но все равно проделал над ними диковинную процедуру, которую требовал от своих студентов профессор Марк Нигрини, преподаватель бухгалтерского дела. Алекс подсчитал, какая доля чисел, обозначающих выручку от продажи товара, начиналась с цифры 1. Эта доля составила 93 %. Он спокойно сдал курсовую и забыл об этих результатах.
Позже, читая студенческие работы, Нигрини наткнулся на эту величину и сразу же понял: здесь может возникнуть очень деликатная ситуация. Его подозрения лишь укрепились, когда он просмотрел остальную часть анализа Алекса, относящегося к бухгалтерии его зятя. Ни одно из чисел, обозначавших выручку от продаж, не начиналось с цифр, лежащих в диапазоне от 2 до 7. При этом лишь 4 числа начинались с восьмерки, а 21 – с девятки. Проверив еще кое-что, Нигрини уже не сомневался: зять Алекса – мошенник, систематически подделывающий финансовую отчетность, дабы избежать нежелательного внимания банковских менеджеров и налоговых инспекторов.
Попытка была вполне убедительная. На первый взгляд, сведения о продажах не показывали ничего слишком уж подозрительного: в них не просматривалось никаких внезапных взлетов или падений, которые обычно привлекают взор контролирующих инстанций. Но в том-то и дело: они оказались чересчур гладкими, а потому и стали жертвой математического ритуала, порученного Алексу профессором.
Нигрини знал (а зять Алекса, очевидно, нет), что цифры, из которых слагаются данные о выручке магазина, должны следовать математическому правилу, открытому больше века назад и названному законом Бенфорда. Этому закону подчиняется необычайно широкий диапазон явлений, от цен на фондовом рынке или данных переписи населения до теплоемкости химических веществ. Даже числовые величины, произвольно надерганные из газет, будут соответствовать требованиям этого закона, предписывающего, чтобы примерно 30 % чисел в выборке начинались с единицы, 18 % – с двойки… и так далее, вниз и вниз по размеру процентной доли, вплоть до 4,6 % для девятки.
Это настолько неожиданный закон, что поначалу многие даже отказываются верить в его справедливость. Не один год закон Бенфорда проходил по разряду математических курьезов. Однако сегодня его воспринимают всерьез самые разные специалисты – от бухгалтеров-криминалистов до разработчиков компьютеров. Все они полагают, что эта закономерность способна помочь им распутывать некоторые сложнейшие проблемы с ошеломляющей легкостью.
История открытия этого закона – такая же странная, как и он сам. В 1881 году американский астроном Саймон Ньюком отправил в American Journal of Mathematics заметку, где сообщал о необычной особенности справочников логарифмов, которую он обнаружил. (Таблицы логарифмов в те времена широко использовались учеными при вычислениях.) Первые страницы таких справочников, похоже, имели тенденцию пачкаться гораздо быстрее, чем все последующие.
Напрашивалось озадачивающее объяснение: по неизвестным причинам люди гораздо чаще делают расчеты для чисел, начинающихся с единицы, чем для чисел, которые начинаются с восьмерки или девятки. Ньюком даже предложил формулу, неплохо описывающую такую разницу: похоже, природе нравится устраивать так, чтобы доля чисел, начинающихся с цифры, которую он обозначил как D, равнялась десятичному логарифму от 1 + (1/D) (см. «Здесь, там и везде»).
Впрочем, Ньюком не привел никаких особенно убедительных доводов в пользу того, почему его формула должна работать, поэтому заметка не вызвала такого уж интереса. Эффект Засаленных Страниц забыли более чем на полвека. Но в 1938 году физик Фрэнк Бенфорд, сотрудничавший с американской компанией General Electric, заново открыл тот же эффект и вывел ту же закономерность, что и Ньюком. Однако Бенфорд пошел гораздо дальше. Используя более чем 20 тысяч чисел (извлеченных отовсюду – от таблиц площади речных бассейнов до чисел, встречающихся в старых журнальных статьях), Бенфорд показал, что все они подчиняются следующему основному закону:
примерно 30 % этих чисел начинается с единицы, 18 % – с двойки и т. п.
Бенфорд, как и Ньюком, не нашел никакого достойного объяснения закона. Но сам гигантский объем данных, которые Бенфорд представил для демонстрации справедливости и вездесущности закона, привел к тому, что его имя с тех пор всегда ассоциируется с этим правилом.
В течение еще примерно четверти века никто не мог дать удовлетворительный ответ на главный вопрос: почему, скажите на милость, этому закону должно подчиняться такое гигантское количество всевозможных источников чисел? Первый большой шаг вперед удалось сделать в 1961 году. Роджер Пинкхем, математик, работавший тогда в Ратгерском университете (Нью-Брансуик, штат Нью-Джерси), подошел к делу обходным путем, хотя и не без изящества. Он рассуждал так. Предположим, действительно существует некий универсальный закон, которому подчиняются цифры в числах, описывающих природные явления и объекты (площадь бассейнов рек, свойства веществ и т. п.). Тогда такой закон должен работать независимо от используемых единиц измерения. Иными словами, даже обитатели планеты Зоуб, измеряющие площадь в грондеках[15], должны обнаружить точно такое же распределение цифр в данных о бассейнах рек, как и мы, скромно пользующиеся гектарами. Но как такое возможно, если в одном гектаре 87,331 грондека?