Если клетка была жива в момент времени t, она погибает в момент (t+1) тогда и только тогда, когда меньше, чем две, или больше, чем три соседние клетки, были живы в момент t.
Рис. 9. Столкновение планера со стационарной структурой в игре "Жизнь".
Чтобы читатель почувствовал, насколько причудливо могут развиваться события в этом мире, проследим за судьбой только одной конфигурации. Некоторые из "моментальных снимков" ее эволюции показаны на рис.9. "Домик" из четырех клеток в отсутствие движущейся структуры "планера" стоял бы на месте, не меняясь со временем. "Планер" двигался бы по диагонали, повторяя свою конфигурацию через каждые четыре шага. Однако им суждено было столкнуться. Число клеток вначале растет, захватывая все большую площадь, а потом уменьшается. Когда эволюция закончена, возникает несколько конфигураций, от времени не зависящих, и других, которые повторяют себя на каждом втором шаге. (Их называют "мигалками", на рис.9, соответствующем моменту времени t=182, они выглядят как три расположенные в ряд или в столбик живые клетки. На следующем шаге по времени "ряды" превратятся в "столбики", а "столбики" в "ряды", затем все повторится.)
Видно, что эволюция в этой игре с примитивными правилами, с локальными связями, включающими только ближайших соседей, может быть довольно сложной. Но этого мало. Математики доказали, что эта эволюция может быть сколь угодно сложной. Эта игра эквивалентна универсальной вычислительной машине. В принципе, имея достаточно большую область из таких клеток, с ее помощью можно проводить вычисления, как на компьютере.
Главной тенденцией в электронике стала миниатюризация. Возможно, в будущем элементы компьютеров станут сравнимы с размерами молекул, и связи в них будут возможны только самые простые, локальные. (Впрочем, тогда бы пришлось подумать о радиационных повреждениях, которые бы могли выводить их из строя. Ведь в отличие от живых организмов, электронные схемы не умеют корректировать, "лечить" тонкие повреждения на микроуровне. Пока не умеют.) Возможно, тогда такие игры, как "Жизнь", станут полезными для микроэлектроники.
Сейчас они полезны, например, при создании новых физических теорий. Вот только два примера, связанных с игрой "Жизнь".
Работа компьютера характерна тем, что мы не можем предсказать результат действия ряда программ, не выполнив их полностью. Такие алгоритмы называют вычислительно неприводимыми. Любая величина в нашем мире может быть измерена с конечной точностью, с конечным числом десятичных цифр. Существуют законы природы, определяющие программы, алгоритмы, по которым производятся действия с этими числами. Поэтому американский исследователь С.Уолфрем предлагает взглянуть на наш мир, как на гигантский компьютер. По его мысли, те процессы, в моделировании которых успехи невелики (а это хаотические турбулентные течения, вихри в атмосфере, экономические системы, биологическая эволюция), описываются неприводимыми алгоритмами. Не правда ли, рискованный полет – от игры "Жизнь" до прогнозов погоды?
Другая теория, называемая теорией самоорганизованной критичности, обязанная своим появлением анализу игры "Жизнь" и другим играм такого типа, сейчас завоевывает все больше приверженцев. Ее результаты используют сегодня в космологии, гидродинамике, в геофизике для прогноза землетрясений и во многих других областях.
Модели такого сорта применяют, например, при анализе химических реакций на поверхности. В модели, исследованной М.С.Шакаевой, существует только три уровня концентрации. В этой модели также обнаружены движущиеся конфигурации – "планеры". На рис.10 показаны два таких "планера" и "моментальный снимок" того, что произошло после столкновения. Не правда ли красиво?
Рис. 10. Столкновение двух "планеров" в среде, имитирующей колебательные химические реакции.
В химии, физике, биологии есть много примеров самоорганизации, но в очень редких случаях разработаны математические модели этих процессов. Ведь речь идет о понимании и копировании на моделях механизмов самоорганизации. Так, например, в замечательной колебательной химической реакции Белоусова-Жаботинского остаются плохо известными детали промежуточных реакций, их константы, хотя сама возможность колебательного режима следует из анализа упрощенных математических моделей. Например, из анализа математических моделей, построенных А.Д.Караваевым, работающим в лаборатории В.П.Казакова в институте органической химии Уфимского научного центра, следует, что изменение некоторых констант реакций на миллионные доли процента может радикально изменить тип наблюдаемого хаотического режима.
Само явление красиво, непривычно и потому загадочно. В пробирке (определенное время) периодически пробегает волна изменения цвета. Это означает, что хаотически движущиеся атомы и молекулы становятся периодически участниками каких-то согласованных процессов, которые, вероятно, очень быстро (как цепная реакция) развиваются и охватывают огромное число элементов среды, обеспечивая единое коллективное поведение. Не правда ли, достаточно глубокая аналогия с разнородным поведением людей, со своими интересами и волнами моды, социальными течениями, войнами и революциями, втягивающими огромные массы людей, часто даже против их воли?
Многие важнейшие открытия в науке 20-го столетия связаны с выявлением эффектов согласованного поведения (синергизмом) на макроуровне совокупностей отдельных элементов (атомов, электронов, клеток, особей), хаотически ведущих себя на микроуровне.
Например, в лазере возникает согласованный процесс излучения возбужденными атомами света одной длины волны и, главное, с одной фазой. Для обычного света характерны колебания электромагнитных волн разной длины и хаотическим образом меняющимися фазами (благодаря хаотическому поведению атомов-излучателей).
К согласованному поведению огромного числа элементов среды относятся возникновение смерчей в воздухе, конвективные ячейки на Солнце (гранулы), течения в океане и циклоны в атмосфере. Самопроизвольно возникающее согласованное поведение наблюдается и среди клеток организмов в процессе морфогенеза, среди элементов биоценозов или в социальных сообществах.
Но как объяснить и смоделировать новые свойства у образующегося целого? Как описать их структуры, их размер, форму или, возможно, спектр форм; законы их развития, вхождения в новые целостности и причины распада? Здесь новые возможности в понимании этих процессов дало применение нелинейных математических моделей и вычислительный эксперимент. Последнее связано с недостаточным развитием даже в современной математике аналитических методов исследования нелинейных моделей.
Важно отметить, что много новых явлений нелинейного мира было открыто в результате решения важных практических задач, в самой гуще научных, технических, военных проектов и исследований. Сюда, прежде всего, можно отнести задачи расчета процессов в атомных и водородных бомбах, ядерных реакторах. Среди других решенных задач можно выделить изучение различных явлений физики плазмы, процессов в установках управляемого термоядерного синтеза. Прогноз погоды, расчеты обтекания ракет, самолетов, автомобилей. Оптимизация процессов добычи нефти, процессов в лазерах и режимов работы реактивных двигателей. Расчеты траекторий ракет и возможностей космических полетов с посадкой и управлением роботами на Луне и Марсе. Несколько позднее были изучены модели ядерной зимы, проблемы потери контроля в СОИ, проведены расчеты многочисленных экономических, биологических, медицинских, социальных и экологических моделей.
Иногда высказывается мнение:"Да, ЭВМ, моделирование, вычислительный эксперимент применяется во многих областях техники и науки в разных странах мира. Но вот синергетика – это очередное поветрие западной мысли в России". Как уже показано выше, развитие нелинейной математики, синергетики, а с ними и нового взгляда на мир и условия жизни в нем – не очередная мода, а естественная стадия развития науки и культуры.
Но давайте все же на нескольких примерах покажем, что теория диссипативных структур, которую сейчас почти всегда в России связывают с работами А.Тьюринга, И.Пригожина, Г.Хакена, независимо развивалась в СССР и достигла больших результатов, как в области понимания механизмов самоорганизации, так и в практическом их применении в передовых областях науки и техники. Мало того, были открыты новые физические явления парадоксального характера и сформулированы неожиданные закономерности мира нелинейных процессов. В ряде случаев разработан новый аналитический, а не только численный, аппарат исследования нелинейных моделей. Так, например, в Институте Прикладной Математики АН СССР (теперь ИПМ им. М.В.Келдыша РАН), являвшемся в СССР пионером в области исследований с применением ЭВМ в новых областях техники и науки, совместно с ИТПМ (Новосибирск) СО АН СССР в начале 70-х годов было сделано открытие эффекта Т-слоя. Температурный слой (Т-слой) – это самоподдерживающаяся диссипативная структура, т.е. локализованная на массе низкотемпературной плазмы область повышенной температуры, эффективно взаимодействующая с магнитным полем. Эффект ее самопроизвольного или индуцированного возникновения, а также условия и механизмы, обуславливающие это явление, были вначале установлены с помощью расчетов на ЭВМ и теоретического анализа модели процессов в плазме, затем зарегистрированы в Комитете по делам открытий в СССР как открытие N55, и, наконец, через несколько лет обнаружены в натурном эксперименте.
Обратим внимание, что первое издание на русском языке книги П.Гленсдорфа, И.Пригожина "Термодинамическая теория структуры, устойчивости и флуктуаций" вышло в 1973 г., а французский вариант был издан немногим раньше. Насколько плохо работы И.Пригожина и его сотрудников по диссипативным структурам были известны в СССР, можно судить по тому сопротивлению физической общественности, с которым были восприняты статьи и доклады исследователей Т-слоя в ведущих научных центрах и на международных конференциях. Хотя в СССР, так же как в США и Европе, интенсивно проводились работы по физике плазмы, и в линейном приближении давно были выявлены теоретиками многочисленные типы неустойчивостей, но никто теоретически не мог ответить на вопрос, что с этими неустойчивостями будет на развитой нелинейной стадии. Каковы будут размеры возникших структур, их форма, как они будут взаимодействовать друг с другом, какова физика плазмы со структурами? Хотя в целом ряде натурных экспериментов наблюдались структуры в диссипативной плазме, но их адекватного теоретического, а в большинстве случаев даже компьютерного, обоснования не существовало.