Синергетика как феномен постнеклассической науки — страница 16 из 44

тических структур, связанных между собой системой предельных переходов — принципов соответствия. По отношению ко всему физическому познанию в целом главным, хотя и выступающим в качестве своего рода побочным, продуктом синтеза теории и эксперимента, является создание коммуникационного сопряжения, реализующего связь познаваемого и познающего, наблюдаемого и наблюдающего, как связь организма и среды. Этот коммуникативный канал имеет циклическое строение и, что существенно, реализуемый в конечном счете через познающих субъектов, в межличностной коммуникации, он может рассматриваться в качестве всегда открытого и незавершенного гештальта. Такое рассмотрение позволяет ввести в познавательную деятельность коммуникативную динамику, мотивацию, интенцию, о чем много и подробно говориться в книге М.Поляни «Личностное знание». [120] В этом контексте научные приборы, инструменты, а также язык представляют собой не просто созданные человеком искусственные вещи и знаки, являющиеся частью новой антропогенной среды, или продолжением органов его тела, или посредниками-коммуникаторами, соединяющими органы чувств и мышление человека с «внешней средой». Это части синергетического гештальта. Такой взгляд на познание дает еще одну перспективу понимания его как единства порождающей, конструирующей деятельности и коммуникации. Именно в рамках такого гештальт-синергетического подхода получает свое оправдание герменевтико-феноменологическая философия естествознания, порождающая понимание прибора как воплощение субъекта, который не принадлежит миру, но есть, как утверждал Витгенштейн, его граница. [45]

2.5 Коммуникативная функция мысленного эксперимента

По свидетельству самого Эйнштейна, о существовании внутреннего конфликта между классической механикой и электродинамикой он начал интуитивно догадываться еще в ранней юности. Толчком к этому послужил мысленный эксперимент с движущимся со скоростью света наблюдателем.

Возникающий здесь парадокс можно представить более отчетливо и наглядно, если, следуя Д.Бому, сформулировать мысленный эксперимент Эйнштейна как попытку ответить на вопрос: «Сможет ли увидеть свое изображение наблюдатель, который движется со скоростью света и смотрит в неподвижное относительно него зеркало?» [192] В соответствии с законами классической механики ответ должен быть отрицательным, однако, как вспоминал Эйнштейн, интуитивно ему казалось ясным, что с точки зрения такого наблюдателя все должно происходить точно так же, как если бы сам он покоился относительно Земли. Заметим, что этот мысленный эксперимент, помимо всего прочего, демонстрировал принципиальную невозможность такого лабораторного эксперимента, в котором бы информационная связь исследователя с изучаемым им объектом осуществлялась без посредничества электромагнитных процессом. Интересно, что эта фундаментальная в гносеологическом отношении роль электромагнитного взаимодействия как носителя особой коммуникативной функции информационного обмена не была полностью сознана многими, в том числе и весьма крупными физиками даже спустя много лет после создания специальной теории относительности (СТО), хотя в некотором смысле именно благодаря этому обстоятельству оказалось возможным рассматривать лежащие в основе этой теории преобразования Лоренца как имеющие такой же универсальный характер в отношении всех физических явлений, какой имеют законы термодинамики.

В качестве подтверждения сказанного можно сослаться на продолжающиеся дискуссии по поводу интерпретации преобразований Лоренца в релятивистской термодинамике или на дебаты вокруг проблемы тахионов — гипотетических частиц, движущихся со сверхсветовой скоростью. Об этом же свидетельствует и дискуссия по проблемам физических измерений, которая состоялась в 1964г. в Италии на международном симпозиуме, посвященном 400-летию со дня рождения Галилея. В ходе обсуждения этих проблем известный физик Д.Чу предложил для выяснения роли электромагнитных взаимодействий в физических измерениях мысленный эксперимент в форме вопроса: что было бы, если во всей Вселенной электромагнитные взаимодействия отсутствовали, но остались другие физические взаимодействия (сильные, слабые, гравитационные). На это предположение другой, не менее известный физик Р.Фейнман возразил, что такая постановка вопроса лишена смысла: без электромагнитных процессов не может существовать само представление об измерении.

Действительно, как указывал в свое время Н.Винер, в теории относительности Эйнштейна «невозможно ввести наблюдателя без одновременного введения идеи обмена информацией и фактически без того, чтобы вновь не заострить внимание физики на квазилейбницианском состоянии, тенденция которого является опять-таки оптической». [43] С этой точки зрения допущение мира, в котором нет электромагнитных взаимодействий, делает невозможным само представление о таком мире, а потому и его существование в качестве наблюдаемого мира, в котором есть наблюдатель, обладающий своим внутренним субъективным опытом. Именно здесь — обратим на это внимание — коммуникативная природа наблюдения прорисовывается особенно отчетливо.

Таким образом, уже само допущение роли электромагнитных процессов в качестве универсального посредника, среды носителя коммуникативной функции информационного обмена, делало излишним механический эфир как среду-носителя электромагнитных явлений. Однако в наблюдаемом эксперименте коммуникативная роль наблюдаемых механических процессов не могла отрицаться. Это объясняется коммуникативной природой эксперимента, предполагающей наличие в нем запоминающего устройства, имеющего дискретный спектр различимых, структурно устойчивых стационарных состояний. Без этой системы, играющей роль запоминающего устройства, эксперимент просто не существует. И эта важнейшая в когнитивном отношении функция эксперимента реализуется посредством механических и тепловых процессов.

Как подчеркивает Я.Г.Дорфман со ссылкой на И.Е.Тамма, именно эти причины заставляют физиков при разработке теории любого немеханического явления рассматривать «фактически только механические или тепловые процессы, сопровождающие это явление». По этой же причине все достаточно разработанные физические теории описывают физические явления своей предметной области посредством уравнений Лагранжа. Но, как указывает далее Дорфман, это не означает, что все явления физики допускают возможность чисто механических объяснений. Это означает лишь, что «всякому физическому процессу неотделимо сопутствуют в той или иной степени механические явления». [61]

По-видимому, эта коммуникативная особенность экспериментального контекста физической теории как гештальта мешала такому крупному мыслителю, как А.Пуанкаре, полностью согласиться с логикой СТО. И это при том, что именно с его именем связана доктрина методологического конвенциализма, интерсубъективного согласия, переоткрываемая синергетикой. Во всяком случае сама мысль о возможности существования чего-то вроде скрытых механических параметров электромагнитных явлений представлялась ему вполне допустимой и оправданной гипотезой до самых последних лет его жизни. Но логика наблюдаемости явлений вместе с процессом наблюдения в СТО, которую А.Эддингтон назвал теорией относительности экспериментального знания, [166] основывалась на обощенном принципе соответствия как принципе сохранения коммуникативной связи с тем, что до ее появления уже наблюдалось в эксперименте. Операционализировав концепт обмена сигналами движущимися относительно друг друга наблюдателями, СТО стремилась связать в одно целое все экспериментальные контексты классической физики, когерентность которых считалась гарантированной либо механическим эфиром, либо, по Канту, синтезирующей коммуникативной деятельностью трансцендентального Я, либо и тем, и другим вместе. [78]

Это было стремление возобновить диалог человека и природы, осуществляемый постредством эксперимента. Для этого нужна была реорганизация всей системы экспериментальных контекстов, упорядочиваемых с помощью иных, неклассических, логик и иных, неэвклидовых, пространственных представлений. Эта кольцевая процедура, именуемая К.Вейцзеккером семантической интерпретацией, начинается с операционального анализа идеализированных экспериментальных контекстов и связывания их на общей коммуникативной основе.

Специфика этой операционально-коммуникативной задачи, как уже говорилось, отразилась в создании СТО Эйнштейна. Спустя более чем двадцать лет эта специфика определила содержание первой публикации Гейзенберга, посвященной интерпретации квантовой механики на основе его соотношения неопределенностей.

И здесь, несмотря на то, что принцип Эйнштейна помог Гейзенбергу в поиске решения этой задачи, результат этого поиска был представлен в статье Гейзенберга в духе все той же радикально эмпирической операциональной философии, квалифицированной Эйнштейном в его разговоре с Гейзенбергом как «не имеющей смысла».

Причина этого, однако, заключалась не только в существовавшей тогда широкой популярности операционалистской философии, но и в том, что замкнутой семантической интерпретации квантовая механика в работе Гейзенберга фактически не получила. В то же время математический аппарат квантовой механики сразу же продемонстрировал свою высокую практическую эффективность в решении целого ряда задач спектроскопии, физики твердого тела, теории химической связи и т.д. Необходимо было двигаться вперед, а для этого, помимо всего прочего, требовалось определенным образом оформить и закрепить те основные результаты, которые были получены на первом этапе работы по интерпретации новой теории.

Этому требованию отвечал выдвинутый Н.Бором принцип дополнительности, одной из важнейших компонент которого явился тезис о необходимости сохранения в контексте квантовомеханического описания языка классической физики. Неудивительно поэтому, что в условиях интеллектуального климата того времени принцип дополнительности был воспринят многими, в том числе и крупнейшими физиками, как принцип преимущественно прагматический и позитивистский по своему содержанию. [226] Такое восприятие принципа дополнительности, надо сказать, весьма распространено и п