Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии — страница 30 из 62

Virgo была не единственным европейским проектом. В Германии в конце 1980-х гг. имелись планы строительства трехкилометрового интерферометра, в 100 раз превышающего 30-метровый прототип Хайнца Биллинга. Биллинг вышел на пенсию в 1989 г., но его новаторскую работу продолжил Карстен Данцманн. Биллинг, тогда 75-летний, был убежден, что рано или поздно усилия его преемника увенчаются успехом. «Герр Данцманн, – сказал он, – я доживу до того момента, когда вы найдете эти волны»[54].

Немцы объединились с экспериментаторами из Глазго (Шотландия) и теоретиками из Кардиффа (Уэльс). Они назвали будущий интерферометр GEO – German-English Observatory. Сегодня Данцманн признает, что они по незнанию здорово сглупили: Шотландия и Уэльс – части Великобритании, но, разумеется, не стоит называть шотландца и валлийца англичанином. Вскоре GEO стало расшифровываться как «Гравитационная европейская обсерватория», хотя полное название практически никогда не используется.

Летом 1990 г. казалось, что проекту стоимостью €100 млн вот-вот будет дан зеленый свет. Однако в следующие два года GEO тихо зачах из-за падения Берлинской стены и последующего объединения Восточной и Западной Германии. Львиная доля расходов нового правительства на науку была направлена на реорганизацию в бывшей ГДР. На крупные новые инициативы просто не осталось денег. К 1992 г. стало ясно, что у GEO нет будущего, по крайней мере в первоначальном виде.

Новые возможности появились, когда Данцманн переехал из Мюнхена в Ганновер, столицу германской земли Нижняя Саксония. В Ганноверском университете знаменитый физик-лазерщик Герберт Веллинг занимался реорганизацией физического факультета, и эксперименты в области гравитационной физики стояли у него в списке приоритетов. В 1993 г. он пригласил Данцманна для разработки новой программы, частично финансируемой фондом «Фольксваген» – немецкой автомобилестроительной компании со штаб-квартирой в Нижней Саксонии. Довольно скоро проект GEO вернули на рассмотрение, хотя и в гораздо менее масштабном и дорогом варианте.

Проект Virgo был одобрен в 1993 г. и первоначально оценивался в €75 млн. Строительство началось через три года. Проект GEO600 – в новом названии была отражена уменьшенная до 600 м длина плеча – стоимостью €10 млн стартовал в 1994 г., а строительные работы по нему начались в 1995 г. за южной окраиной Ганновера. Европейцы взяли быстрый старт.

GEO600 производит совершенно иное впечатление, чем LIGO или Virgo. Прежде всего, объект довольно трудно найти. К западу от крохотной деревушки Руте сначала расстилаются поля сельскохозяйственного факультета университета. Затем узкая пыльная дорога ведет к россыпи панельных сооружений: администрации, посту управления и столовой обсерватории. 600-метровые гофрированные трубы напоминают детали дешевой канализационной системы. Они прячутся в траншеях, и их легко проглядеть. Но внешность обманчива. Войдя в центральное здание, частично заглубленное в землю, вы оказываетесь в окружении высокотехнологичного лазерного оборудования, стоек электроники и вакуумных резервуаров, где заключена точная оптика.

Во время моего визита[55] в начале февраля 2015 г. GEO600 был единственным действующим лазерным интерферометром в мире – LIGO и Virgo закрылись на реконструкцию. Никто, однако, не надеялся, что маленький немецкий детектор уловит колебания пространственно-временного континуума – он намного менее чувствителен, чем три его старших брата. Главным предназначением этого объекта была разработка и апробация новых технологий. Рециркуляция сигнала впервые была применена здесь. GEO600 продемонстрировал и возможности метода сжатого света, использующего квантовые эффекты для увеличения стабильности выходного сигнала интерферометра.

Сначала европейские проекты, особенно Virgo, воспринимались как конкуренты LIGO. Кое-кто даже опасался, что европейцы обойдут американцев, первыми проведя прямую регистрацию волн Эйнштейна, и этот призрачный риск, возможно, помог LIGO выжить. Но скоро стало ясно, что от сотрудничества выиграют все.

За два года до официальной церемонии открытия LIGO, состоявшейся в ноябре 1999 г., детектор GEO600 присоединился к научной коллаборации LIGO. Первый одновременный пробный запуск обсерваторий в Хэнфорде и Ливингстоне и GEO600 был произведен в 2002 г. Год спустя начала функционировать Virgo. В 2007 г. коллаборации LIGO и Virgo заключили соглашение о совместном анализе данных. С тех пор все технические данные, результаты тестов, измерения в ходе наблюдений и научный анализ четырех детекторов являются общим достоянием тысячи с лишним членов различных групп.

_________

Это был долгий тернистый путь, но все хорошо, что хорошо кончается. После длительного этапа отладки и нескольких лет наблюдений первоначальные версии LIGO и Virgo закрыли на реконструкцию, соответственно в октябре 2010-го и в декабре 2011 г. Гравитационные волны не были зарегистрированы спустя полвека после того, как Джо Вебер впервые задумался о способах измерения крохотных колебаний. Тем не менее все сохраняли оптимизм. Вот-вот начнется создание усовершенствованных версий LIGO и Virgo[56]. В течение пяти лет предполагалось собрать новые детекторы. Постепенно они станут гораздо чувствительнее предшественников. Еще несколько лет подождать, еще немного потерпеть.

17 марта 2014 г. исследователи Гарвард-Смитсоновского центра астрофизики в Кембридже (штат Массачусетс) объявили, пользуясь их терминологией, о «первом прямом изображении гравитационных волн». Не от столкновения нейтронных звезд или слияния ЧД, а вследствие Большого взрыва. Полученном с помощью не гигантского лазерного интерферометра, а маленького микроволнового телескопа на Южном полюсе.

Неужели Рэя Вайсса, Кипа Торна, Рона Древера и всех остальных обошли – после десятилетий разработки, строительства, тестирования и вложений сотни миллионов долларов?

Это тема главы 10. Но сначала я должен объяснить, как возникла Вселенная.

9О сотворении мира

«Вначале было ничто, и оно взорвалось».

Эта знаменитая цитата из Терри Пратчетта часто используется (возможно, напрасно) для высмеивания космологии. Логика обычно следующая. Вы называете себя учеными? Утверждаете, будто что-то знаете о Вселенной? Да ладно, вся эта болтовня о Большом взрыве просто смешна – это же полная бессмыслица! Отсюда вытекает, что наука не может быть путем к истине. Возвращаемся к божественному Творцу или кому что больше нравится.

Я никогда не понимал этой аргументации. Наука не умеет лечить рак. Наука практически ничего не знает о сознании человека. Никто не считает это причиной отбросить науку за ненадобностью. Наоборот! Но, когда звучит труднейший, наиглавнейший, глубочайший вопрос – как все началось? – ученых высмеивают за то, что они до сих пор не раскрыли эту тайну. А на что вы рассчитывали?

Если вы не понимаете, откуда взялась Вселенная, то у вас хорошая компания. Даже умнейшие космологи не знают, с чего все началось. Самые светлые умы человечества не имеют представления, что происходило до Большого взрыва и правомерно ли вообще так ставить вопрос. Даже Стивен Хокинг не знал наверняка, действительно ли Вселенная бесконечна и одна ли она. Самые трудные вопросы – те самые, которыми задается любой ребенок, – пока не имеют ответов, но наука далеко ушла от аллегорических мифов древности.

Если вы когда-нибудь задумывались над проблемами космологии, то наверняка испытывали затруднения. Это всем свойственно. Расширение космоса, красное смещение для галактик, искривленное пространство, бесконечность… Космология – сложная штука, но у нас впереди целая глава, и я сделаю все возможное, чтобы провести вас через минное поле научных понятий.

_________

Все слышали о Большом взрыве. Около 13,8 млрд лет назад Вселенная была сжата в одну бесконечно малую точку в пространстве, и Большой взрыв разметал ее вещество во всех возможных направлениях, правильно?

Неправильно.

Это первое – и главное – заблуждение. Большой взрыв произошел не в пространстве. Это был взрыв самого пространства. По крайней мере такая формулировка намного более точна. Большинство людей представляют себе Большой взрыв как гигантский фейерверк: он исходит из определенного места и расшвыривает вещество по пространству во все стороны. Как только заметите, что представляете Большой взрыв в виде фейерверка, выбросьте эту картину из головы. Она ложна.

Чтобы вам стало понятнее, давайте перенесемся назад во времени примерно на столетие. Астрономы открыли спиральные туманности, такие как Андромеда и Водоворот. Никто не знал их подлинной природы. Одни считали их относительно близкими завихренными облаками газа, из которых со временем может образоваться новая звезда. Другие – крупными скоплениями звезд на значительно большем удалении, намного дальше нашей собственной галактики Млечный Путь.

Измерить расстояние до спиральной туманности невозможно – между Землей и Андромедой не растянешь рулетку. Но о спиральных туманностях можно узнать многое другое: положение в небе, видимый размер, яркость и форму. Чем больше вы о них знаете, тем выше шансы понять, что они из себя представляют.

Весто Слайфер догадался, что может установить еще один параметр – скорость сближения туманности с нами или удаления от нас. Как и его младший брат Эрл, Весто был астрономом в обсерватории Лоуэлла в Флагстаффе, штат Аризона. Эрл занимался в основном планетами, а Весто больше интересовали туманности. В 1912 г. он первым измерил скорость спиральной туманности.

Как измерить скорость объекта, не зная расстояния до него? С помощью эффекта Доплера, о котором я рассказал в главе 6. Вспомните пример с проезжающей мимо скорой помощью. Когда она выруливает на вашу улицу и мчится, приближаясь к вам, звук ее сирены кажется более высоким. Когда она удаляется от вас, звук сирены заметно понижается. Изменение тона является мерилом скорости машины скорой помощи.