Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии — страница 48 из 62

Надежды на регистрацию гравитационно-волнового фона могут оказаться беспочвенными по многим причинам. Возможно, в молодой Вселенной возникло меньше сверхмассивных ЧД, чем мы думаем, или галактики сливаются реже, чем принято считать. А может быть, сверхмассивным ЧД нужны миллиарды лет, чтобы оказаться достаточно близко друг от друга. Миллионы слияний могут «забуксовать». Финальная фаза сближения может быть гораздо скоротечнее, чем в теории. Возможно сочетание нескольких факторов.

В то же время временны́е измерения решетки пульсаров – пусть пока с нулевым результатом – дают ценные фрагменты общей картины. Сила гравитационно-волнового фона снабжает астрономов важной информацией об эволюции галактик и сверхмассивных ЧД. Благодаря программам продолжительностью в несколько десятилетий теоретики сегодня располагают экспериментальными данными для проверки своих гипотез. Некоторые теоретические модели эволюции галактик путем слияния уже опровергнуты, поскольку предсказывали существование настолько сильных наногерцовых волн, что их уже должны были зарегистрировать. Если наногерцовые волны будут обнаружены в ближайшем будущем, их характеристики многое расскажут о процессах в дальних областях Вселенной и в ядрах сливающихся галактик.

На сегодняшний день астрономы, изучающие пульсары, продолжают кропотливый труд. Примерно каждые две недели они обследуют десятки миллисекундных пульсаров, пополняя базу данных. Медленно, но верно, год за годом, повышается чувствительность инструментов. Никто не сомневается, что когда-нибудь поиск увенчается успехом. Это, однако, будет не революционная регистрация, как у LIGO, а следствие постепенно растущей уверенности.

Перенесемся в 2030 г. Инструменты прошлого выведены из эксплуатации. Аресибо, Паркс, Грин-Бэнк – все эти обсерватории 10 лет назад столкнулись с финансовыми проблемами, поскольку государственные финансовые институты решили направить средства на другие цели. Гигантские радиотелескопы превратились в музеи под открытым небом, памятники культурного, промышленного и научного наследия. Их посты управления стали популярными центрами научного просвещения, куда зачастили группы школьников. Огромные тарелки поддерживают в рабочем состоянии волонтеры из местных астрономических клубов и организаций любительской радиосвязи.

В Европе наблюдается похожая ситуация, хотя некоторые радиотелескопы, участвовавшие в первоначальном проекте EPTA, еще используются профессиональными астрономами. На северо-востоке Нидерландов Вестерборкская система апертурного синтеза только что отметила 60-летие. Маленькая выставка на ее территории рассказывает о самых важных астрономических открытиях обсерватории, в том числе о получении еще в 1970-х гг. первого убедительного свидетельства существования темной материи в галактиках. Последний стенд посвящен регистрации наногерцовых волн Эйнштейна в начале 2020-х гг., состоявшейся благодаря объединению пяти обсерваторий ЕРТА в один «виртуальный» телескоп диаметром почти 200 м. Проект «Большая европейская решетка для изучения пульсаров» (Large European Array for Pulsars, LEAP), стартовавший за несколько лет до этого, наконец добился скачкообразного роста точности, необходимого для достоверного измерения гравитационно-волнового фона[100].

Изучение пульсаров стало процветающей ветвью астрономии. В Млечном Пути открыто порядка 20 000 пульсаров – около 10 % имеющихся. Среди них более тысячи миллисекундных; у самого быстрого фантастическая угловая скорость – 1130 оборотов в секунду. Число известных планет на орбитах пульсаров увеличилось до 34, они относятся к 14 системам. Двойных пульсаров множество. Одна из двойных систем, открытая в 2027 г., приковала всеобщее внимание своей близостью, чрезвычайно коротким периодом обращения и стремительным сокращением орбиты. Лазерно-интерферометрическая космическая антенна, которая скоро будет запущена в космос, должна поймать слабый сигнал гравитационной волны средней частоты, излученной этими двумя небесными телами на общей орбите.

В Международном центре изучения пульсаров им. Джоселин Белл наногерцовые гравитационные волны также постоянно исследуются. Программа IPTA на сегодняшний день следит примерно за 500 миллисекундными пульсарами. Точность измерений возросла до порядка 10 наносекунд. Помимо фона с выраженными характеристиками, было открыто и локализовано пять самостоятельных источников волн чрезвычайно низкой частоты – двойных систем сверхмассивных ЧД в галактиках, находящихся в центральных областях близлежащих скоплений.

Если этот воображаемый сценарий хотя бы отчасти сбудется, то во многом благодаря новой радиообсерватории, обещающей затмить всех предшественниц. Ее инструментом станет не единичная тарелка, как в Парксе, Аресибо или Китае, где недавно завершилось строительство 500-метрового телескопа FAST, и не классический интерферометр, подобный нидерландскому Вестерборку или Очень большой решетке в Нью-Мексико. Так называемая Решетка в квадратный километр (Square Kilometre Array, SKA)[101] – это планомерное объединение многих сотен радиотелескопов-тарелок и десятков тысяч простых дипольных антенн. Со временем ее полная площадь перехвата составит 1 км2, отсюда и название. Тарелки и антенны, соединенные оптоволоконными кабелями, будут действовать синхронно, выдавая на мощный центральный суперкомпьютер сотни терабайт первичных данных в секунду. Это будет самый крупный научный полигон в истории человечества.

Если Паркс в Новом Южном Уэльсе кажется вам маленьким городком с неказистым центром, добро пожаловать в Мерчисон в Западной Австралии на другой стороне континента. Это просто горстка хаотично расположенных домов с единственным магазином, он же бар и автозаправка. Несколько десятков человек живут здесь на бывшей территории племени аборигенов ватярри яматджи. Еще несколько человек фермерствуют дальше в буше. Весь Мерчисоншир занимает площадь примерно со штат Мэриленд, а население составляет 110 человек. Это рай для радиоастрономов.

Возле гигантского ранчо Буларди-Стейшн австралийские астрономы установили в пустыне на огромном пространстве 36 12-метровых тарелок. Это Австралийский целеуказатель Решетки в квадратный километр, сокращенно ASKAP[102]. Строительство радиотелескопов было завершено в 2012 г. Монтаж чувствительных фидеров фазированной антенной решетки занял еще около двух лет. Первые научные наблюдения (с участием только 11 тарелок) астрономы провели весной 2016 г.

Недалеко от ASKAP находится еще один телескоп-целеуказатель SKA – «Мерчисонский массив широкого поля» (Murchison Widefield Array, MWA)[103]. Он вообще не похож на радиообсерваторию. MWA состоит из многих десятков антенных полей, или ячеек. Каждая ячейка включает 16 похожих на паука дипольных антенн высотой не более 50 см. Впервые эта система была применена в телескопе «Низкочастотная антенная решетка» (Low-Frequency Array, LOFAR) в Нидерландах. ASKAP и MWA дополняют друг друга: ASKAP – один из самых быстрых радиотелескопов в мире, способный обследовать обширные области Вселенной, а MWA ориентирован на поиск низкочастотных космических радиоволн, излученных всего через несколько сот миллионов лет после Большого взрыва.

Этот далекий пустынный регион был выбран за исключительную радиотишину. Здесь строго запрещается пользоваться сотовыми телефонами. Пост управления ASKAP имеет металлический кожух, не выпускающий наружу радиоволны, создаваемые компьютерами и электроникой внутри здания. Одним из главных источников радиопомех являются самолеты, поэтому радиоастрономы стараются добиться переноса некоторых воздушных коридоров. Земля здесь плоская, горячая и сухая – безбрежная равнина красного песка и кустарников, населенная комарами, хищными птицами и кенгуру.

Через несколько лет Мерчисонская радиообсерватория станет ядром австралийской части Решетки в квадратный километр. Опираясь на опыт работы с MWA, астрономы построят десятки тысяч более крупных дипольных антенн, напоминающих рождественскую ель в рост человека. Они будут сгруппированы в круглые станции, распределенные по многим сотням километров красной австралийской пустыни. Соединенные оптоволокном и подключенные к гигантскому суперкомпьютеру в Перте, антенны станут самым чутким низкочастотным «ухом» в истории.

Тем временем в Грейт Кару – полупустынной области в Южной Африке к северо-западу от городка Карнарвон – уже действуют два целеуказателя SKA. «Решетка для изучения эпохи вторичной ионизации водорода», или «Гера» (Hydrogen Epoch of Reionization Array, HERA), состоит из 19 простых 14-метровых тарелок из проволочной сетки[104]. Массив расширяется и к концу 2018 г. будет включать около 350 тарелок. MeerKAT – это массив из 64 13,5-метровых радиотелескопов. Проект войдет в первый этап строительства среднечастотной части SKA.

В свое время здесь будут синхронно работать многие сотни радиоантенн, изучая радиогалактики и квазары, происхождение и эволюцию галактик, остатки сверхновых и добиотические молекулы в космосе, а также, конечно, пульсары. Решетка в квадратный километр (особенно ее южноафриканская часть) благодаря невероятной чувствительности откроет новую эпоху в измерении временны́х характеристик массива пульсаров.

SKA, предположительно, сыграет ведущую роль еще в одной сфере гравитационно-волновых исследований – идентификации источников волн. Слабейшие возмущения пространственно-временного континуума, которые «почувствовали» радиотелескопы, очень многое могут рассказать о таких космических катастрофах, как взрывы звезд и слияния нейтронных звезд. Но ученые всегда хотят большего. И это естественно! Если у вас под ногами задрожит земля, вы обязательно оглядитесь в поисках причины и чем больше зацепок найдете, тем лучше. Поэтому астрономы охотятся за так называемыми электромагнитными проявлениями источников гравитационных волн, сочетая возможно больше наблюдений. Они надеются, что радиообсерватории и оптические инструменты с быстрым откликом сумеют «увидеть» события, ставшие первопричиной волн Эйнштейна.