Здравствуй, многоканальная астрономия!
14Быстрая реакция
Обсерватория Роке-де-лос-Мучачос на острове Ла-Пальма Канарского архипелага – одно из самых очаровательных мест, в которых я побывал. Ла-Пальма – это гора-вулкан, вздымающаяся на 2423 м над водами Атлантического океана в области марокканского побережья[105]. Обсерватория примостилась на северном склоне огромной кальдеры. От портового города Санта-Крус-де-ла-Пальма опасный серпантин с десятками крутых виражей ведет к усеянной камнями вершине, где нередко оказываешься выше облаков. Кажется, что стоишь на вершине мира прямо под звездами.
Поздно вечером в пятницу 28 февраля 1997 г. один из куполов обсерватории неожиданно пришел в движение. Телескоп Уильяма Гершеля диаметром 4,2 м должен был наблюдать за частью неба в созвездии Змеи, но стал смещаться дальше на запад, нацеливаясь на область очень низко над горизонтом. Штатный астроном Джон Телтинг сделал несколько снимков маленькой зоны в северо-западной части созвездия Орион. Той же ночью цифровые изображения были отправлены по интернету в Амстердамский университет. Вскоре студенты-дипломники Пауль Гроот и Титус Галама совершили прорыв в перспективной сфере астрономии – в изучении гамма-всплесков.
Эта книга посвящена гравитационным волнам, а не гамма-всплескам, но, как вы скоро узнаете из этой главы, две темы очень тесно связаны. Эта история важна еще и тем, что показывает, зачем астрономам быстрые дополняющие наблюдения краткосрочных феноменов. Итак, я очень коротко расскажу о гамма-всплесках[106].
В конце 1960-х гг. в данных американских разведывательных спутников Vela были обнаружены необъяснимые выбросы высокоэнергетического рентгеновского излучения. Только через 10 лет астрономы убедились в космическом происхождении этих коротких вспышек. Прошло еще около десятилетия, и в апреле 1991 г. НАСА вывело на орбиту гамма-обсерваторию Комптон. Одной из ее задач было собрать как можно больше данных о загадочных космических импульсах и узнать, что они из себя представляют. (Космическое высокоэнергетическое рентгеновское излучение невозможно наблюдать на Земле, поскольку, к счастью, эта смертельная радиация поглощается атмосферой нашей планеты.)
Раскрыть тайну гамма-всплесков оказалось гораздо труднее, чем предполагалось. Как и следовало ожидать, детектор обсерватории Комптон «Инструмент для исследования вспышечных и транзиентных событий» (Burst and Transient Source Experiment, BATSE) за несколько лет зарегистрировал много сотен всплесков, но определить их положение в небе с высокой точностью, не говоря уже о дистанции до них, оказалось невозможно. Кроме того, короткие вспышки – некоторые продолжительностью в малую долю секунды – происходили где угодно, без какой-либо системы. По их распределению нельзя было судить, что это – относительно слабые источники недалеко от нас (столкновения астероидов или взрывы на поверхности ближних звезд) или исключительно мощные события в далеких галактиках.
Все изменилось с запуском итало-голландского спутника BeppoSAX в апреле 1996 г. Кроме измерителя гамма-излучения, маленький спутник был оборудован рентгеновскими телескопами. Замысел ученых состоял в следующем: любой взрыв в космосе сопровождается чрезвычайно кратким выбросом высокоэнергетического гамма-излучения, но рентгеновские лучи более низких энергий, возможно, излучаются дольше. Более того, рентгеновский телескоп может гораздо точнее нацелиться на точку в небе, где происходит всплеск. Если информацию о нем достаточно быстро передать астрономам на Земле, то, вероятно, удастся найти его «послесвечение» в радиодиапазоне или даже оптическое проявление.
Поэтому, узнав, что BeppoSAX зарегистрировал всплеск, Пауль Гроот и Титус Галама должны были действовать максимально быстро. Официально они не имели права использовать информацию ни для чего, кроме радионаблюдений. Более того, британско-голландский телескоп Уильяма Гершеля, оптический инструмент, той ночью должен был выполнять другие наблюдения. Гроот и Галама не смогли связаться со своим научным руководителем Яном ван Парадейсом, и Гроот в конце концов решил нарушить правила. Он позвонил Джону Телтингу на Ла-Пальму и попросил сфотографировать область в северо-западной части Ориона, указанную BeppoSAX.
Вскоре оптическое проявление было обнаружено. Стало очевидно, что гамма-всплеск произошел в очень далекой галактике, в миллиардах световых лет. Это означало, что выделенная энергия взрыва колоссальна – гамма-всплески являются одними из самых высокоэнергетических событий, наблюдаемых во Вселенной. Следствием революционного открытия стало появление нового научного направления – астрофизики высоких энергий. Особое значение в нем приобрело безотлагательное дополняющее наблюдение эпизодических и краткосрочных космических феноменов.
Быстрый отклик уже стал в астрономии обыденностью, и во многих случаях он полностью автоматизирован. Через считаные минуты после того, как гамма- или рентгеновский спутник наблюдает интересное явление, похожее на всплеск, маленькие наземные роботы-телескопы начинают фотографировать подозрительную область неба в поисках видимого проявления. Более крупные телескопы обычно не способны отреагировать настолько оперативно, но и они иногда прерывают текущие программы наблюдения, чтобы помочь найти «виновника».
Сигналы гравитационных волн не исключение. 17 сентября 2015 г. VST – Обзорный телескоп комплекса европейского «Очень большого телескопа» на Сьерро-Паранал в северной части Чили – начал обшаривать южное небо в поисках оптического проявления гравитационно-волнового сигнала, зарегистрированного LIGO тремя днями ранее. Как описывалось в главе 11, автоматическая система оповещения еще не действовала, но пресс-секретари LIGO и Virgo Габриэла Гонсалес и Фульвио Риччи сообщили астрономам, куда смотреть, подобно тому как Пауль Гроот и Титус Галама указали своему коллеге на Ла-Пальме, где искать возможное оптическое проявление гамма-всплеска[107].
Наряду с островом Ла-Пальма из группы Канарских островов север Чили – одно из лучших мест в мире для оптической астрономии. Сьерро-Паранал – это отдаленная бесплодная гора в составе чилийской Береговой Кордильеры примерно в 130 км к югу от портового города Антофагаста. Когда я впервые побывал в этой обсерватории в 1998 г., добраться туда можно было только по разбитой гравийной дороге, протянувшейся на 80 км через потусторонний марсианский ландшафт. С тех пор дорогу замостили камнем, но пейзаж остался прежним[108]. Там снимались финальные сцены фильма 2008 г. о Джеймсе Бонде «Квант милосердия».
В Паранале находится одна из самых продуктивных наземных оптических обсерваторий в мире – «Очень большой телескоп» (Very Large Telescope, VLT). Построенный Европейской южной обсерваторией в 1990-е гг., он состоит из четырех одинаковых 8,2-метровых телескопов. Все они оснащены большим количеством чувствительных камер и спектрографов. Рядом с четырьмя гигантами установлен 2,6-метровый телескоп, обслуживающий программу наблюдения VLT. Этот Обзорный телескоп VLT, завершенный в 2011 г., имеет намного большее поле зрения. Его огромная (268 Мп) камера за несколько минут находит очень бледные звезды в больших полосах обзора. Это прекрасный инструмент для поиска возможного оптического проявления GW150914.
К сожалению, поиск оказался безрезультатным, как и попытки других обсерваторий по всему миру. Может быть, смотреть действительно было не на что. В конце концов, какого оптического сигнала можно ждать от столкновения двух ЧД? В то же время неудача может объясняться совершенно иной причиной. Никто точно не знал, с какой стороны пришли волны Эйнштейна. Иными словами, зона поиска охватывала слишком большую часть неба. Тем не менее все считают дополняющие наблюдения очень важными для обнаружения электромагнитных проявлений в оптическом, инфракрасном, ультрафиолетовом, миллиметровом, рентгеновском, гамма- или радиодиапазонах. Любое электромагнитное излучение, вызванное событием-прародителем гравитационных волн, может принести ценную дополнительную информацию.
Почему необходим поиск электромагнитного проявления? Поясню на аналогии. Представьте, что вы врач-отоларинголог и пришли на футбольный стадион. Во время затишья в матче вы слышите, как кто-то чихает. Звук очень необычный, и поскольку вы настоящий профессионал, то хотите во всем разобраться. Вы уловили, что чихали где-то справа от вас, но определить, кто именно, только по слуху невозможно. Исходя из громкости звука, можно сделать лишь самый общий вывод о расстоянии, на котором находился его источник. У вас нет шанса обнаружить чихавшего – это мог быть кто угодно.
Однако, если вы очень быстро, едва раздастся чихание, повернете голову, то, вероятно, заметите, что один зритель не успел выпрямиться и, прикрывая лицо, нашаривает носовой платок. Вы обнаружили чихавшего и теперь точно знаете, на каком расстоянии раздался звук, следовательно, можете оценить его реальную силу. Можно также исследовать этого человека с расчетом больше узнать о странном симптоме.
Здесь важны два обстоятельства. Первое: если вы наблюдаете какое-то явление неким определенным образом, всегда полезно пронаблюдать за ним еще и совершенно иным способом. Когда вы слышите что-то, то хотите еще и увидеть это. Если вы поймали гамма-излучение взрыва в космосе, то захотите воспользоваться радиотелескопами или оптическими инструментами. Если ваши инструменты зарегистрируют слабые возмущения пространственно-временного континуума, попытаетесь найти и электромагнитные проявления. Второе: если наблюдаемый феномен является краткосрочным, необходимо действовать быстро.
Много столетий астрономия была наукой неторопливых. Планеты медленно меняли местоположение на небе, созвездия всегда выглядели одинаково, падающая звезда или редкая комета вызывали некоторое оживление, но в общем астрономам незачем было спешить. То, что они имели возможность изучать сегодня, прекрасно можно было исследовать и на следующий день или в следующем году.