Скрытая реальность. Параллельные миры и глубинные законы космоса — страница 16 из 80

Существуют варианты инфляционной теории, в которых инфлатон не вечен. Подбирая различные параметры теории, такие как число полей инфлатона и кривые потенциальной энергии, умные теоретики могут сделать так, чтобы инфлатон повсеместно скатился из верхнего положения. Но подобные идеи — скорее исключение. Как правило, инфляционные модели приводят к невообразимо огромному числу дочерних вселенных, находящихся в вечно расширяющемся пространстве. И поэтому если инфляционная теория верна, и если согласно множеству теоретических исследований её физически значимая реализация приводит к вечной инфляции, то существование инфляционной мультивселенной является неизбежным следствием.

Поворачивая перспективу

В 1980-х годах, когда Виленкин осознал вечный характер инфляционного расширения и сопутствующих параллельных вселенных, он пришёл в сильное возбуждение и поехал к Алану Гуту в Массачусетский технологический институт, чтобы рассказать ему об этом. Где-то в середине рассказа голова Гута склонилась — он уснул. В принципе, это не является плохим знаком; вообще-то, хорошо известно, что Гут начинает клевать носом во время семинаров — например, во время моих выступлений он несколько раз закрывал глаза, — но затем он просыпается и задаёт удивительно проницательный вопрос. Однако физическое сообщество проявило не больше энтузиазма, чем Гут; поэтому Виленкин отложил эту идею и стал работать над другими проектам.

Сегодня отношение к вечной инфляции очень разное. Когда Виленкин впервые задумался об инфляционной мультивселенной, прямых подтверждений в пользу самой инфляционной теории было не так и много. Поэтому те немногие, кто хоть как-то заинтересовался, считали, что идеи об инфляционном расширении, порождающем огромное множество параллельных Вселенных, являются спекуляцией на спекуляции. Но в последующие годы количество наблюдательных данных в пользу инфляции значительно увеличилось, в основном, благодаря точным измерениям реликтового излучения.

Хотя наблюдаемая однородность реликтового излучения является одной из основных мотиваций развития инфляционной теории, первые сторонники теории понимали, что быстрое пространственное расширение не сможет обеспечить абсолютную однородность излучения. Наоборот, они утверждали, что квантово-механические флуктуации, растянутые инфляционным расширением, нарушают однородность, создавая миниатюрные температурные колебания, подобные мельчайшей ряби на ровной поверхности пруда. Этот блистательный результат оказал огромное влияние на последующее развитие.[15] Рассмотрим всё поподробнее.

Квантовая неопределённость приводит к флуктуациям поля инфлатона. Действительно, если инфляционная теория верна, то взрывоподобное инфляционное расширение здесь закончилось, потому что большая и удачливая квантовая флуктуация почти 14 миллиардов лет назад сбросила инфлатон с верхней точки в нашей части вселенной. Но это ещё не конец истории. Пока инфлатон в нашем пузырьке-вселенной скатывается вниз к точке завершения инфляции, его значения по прежнему подвержены квантовым флуктуациям. Флуктуации, в свою очередь, могут изменить величину инфлатона на чуть выше здесь и чуть ниже там, подобно волнистой поверхности покрывала, брошенного поверх кровати. Это приводит к небольшим изменениям в энергии, которой инфлатон наполняет пространство. Как правило, такие квантовые изменения настолько малы и происходят на таких микроскопических расстояниях, что на космических масштабах ими можно спокойно пренебречь. Однако инфляционное расширение — это никак не обычный процесс.

Расширение пространства происходит настолько быстро, даже на выходе из инфляционного режима, что всё микроскопическое растягивается настолько, что становится макроскопическим. Подобно надписи, сделанной крохотными буковками на воздушном шаре, которая начинает проявляться, по мере того как воздух растягивает поверхность шара, влияние квантовых флуктуаций становится видимым, когда инфляционное расширение растягивает космическую ткань. В частности, небольшие отклонения в энергии, вызванные квантовыми флуктуациями, переходят в температурные отклонения, которые отпечатываются на реликтовом излучении. Вычисления показывают, что температурные отклонения нельзя назвать уж очень большими, но они могут достигать примерно одной тысячной доли градуса. Если температура в одной области составляет 2,725 K, то в близлежащих областях в результате растянутых квантовых флуктуаций температура может быть чуть ниже, скажем, 2,7245 K, или чуть выше — 2,7255 K.

Поиск таких температурных колебаний стал предметом скрупулёзных астрономических наблюдений. В конце концов они были обнаружены. В точном согласии с предсказаниями теории они составляют примерно тысячную долю градуса (рис. 3.4). Но больше всего впечатляет то, что картина расположения температурных отклонений на небе точно соответствует теоретическим предсказаниям. На рис. 3.5 сопоставлены теоретические предсказания колебаний температуры — как функция расстояния между областями (в угловых размерах между соответствующими прямыми, проведёнными с Земли) с наблюдательными данными. Согласие результатов просто потрясающее.

Рис. 3.4. В инфляционной космологии гигантское пространственное расширение растягивает микроскопические квантовые флуктуации до макроскопических размеров, что приводит к наблюдаемым температурным колебаниям реликтового излучения (более тёмные пятнышки чуть холоднее более светлых)

Рис. 3.5. Диаграмма температурных колебаний реликтового излучения. Температурные колебания отложены по вертикальной оси; расстояние между двумя областями (в угловых размерах между соответствующими прямыми, проведёнными с Земли — бо́льшие углы правее, меньшие углы левее) отложено на горизонтальной оси.{22} Теоретические предсказания нанесены сплошной линией; экспериментальные данные представлены кружочками

Нобелевская премия по физике 2006 года за обнаружение этих температурных колебаний была присуждена Джорджу Смуту и Джону Мазеру, которые в начале 1990-х годов возглавляли исследовательскую группу проекта COBE[16] из более чем тысячи сотрудников. За прошедшее десятилетие всё новые и более точные измерения подтверждают данные на рис. 3.5 и приводят к более точному согласию с предсказанными значениями температурных колебаний.

Эти исследования стали венцом захватывающей истории открытий, начавшихся с гипотез Эйнштейна, Леметра и Фридмана, стремительно продвинутых вперёд вычислениями Гамова, Альфера и Германа, усиленных идеями Дикке и Пиблса, подтверждёнными затем в наблюдениях Пензиаса и Вильсона, и теперь достигших кульминации благодаря скрупулёзной работе армии астрономов, физиков и инженеров, чьи совместные усилия привели к обнаружению невероятно слабого космического автографа, оставленного миллиарды лет назад.

На качественном уровне можно сказать, что мы все должны быть благодарны пятнышкам на рис. 3.4. Когда инфляция в нашем пузырьке-вселенной подходила к концу, области с несколько большей энергией (или массой, как следует из формулы E = mc2) создавали чуть более сильное гравитационное притяжение, притягивая больше частиц из близлежащих окрестностей и становясь, таким образом, больше. Большое скопление частиц в свою очередь создавало ещё более сильное гравитационное притяжение, притягивая ещё больше вещества и ещё больше увеличиваясь в размерах. С течением времени этот эффект снежного кома привёл к образованию целых глыб вещества и энергии, которые за миллиарды лет стали галактиками и звёздами. Таким способом инфляционная теория устанавливает замечательную связь между самыми большими и самыми маленькими структурами космоса. Само существование галактик, звёзд, планет и жизни как таковой возникает из микроскопической квантовой неопределённости, усиленной инфляционным расширением.

Теоретические умозаключения, лежащие в основе инфляции, не являются бесспорными: в конце концов, инфлатон является гипотетическим полем, существование которого всё ещё нужно доказать; кривая потенциальной энергии была постулирована теоретически, а не обнаружена экспериментально; инфлатон обязан каким-то образом начать свою эволюцию в заданной области пространства с самого верха кривой потенциальной энергии, и так далее. Несмотря на это, даже если какие-то детали теории не совсем верны, согласие между теорией и экспериментом убедило многих, что инфляционный сценарий правильно отражает фундаментальные представления о космической эволюции. Поскольку в большинстве сценариев инфляция является вечной и приводит к постоянно растущему числу дочерних вселенных, то такое объединение теории и эксперимента является пусть косвенным, но убедительным аргументом в пользу существования ещё одной версии параллельных миров.

Встречаем инфляционную мультивселенную

В лоскутной мультивселенной нет резкого раздела между одной параллельной вселенной и другой. Они все являются частями единственного пространства, качественные характеристики которого не сильно меняются от области к области. Сюрприз поджидает нас при более детальном рассмотрении. Большинство из нас никак не ожидают, что миры повторяются; мы не готовы регулярно сталкиваться со своими клонами, клонами друзей и близких. Но если бы мы могли углубиться в космос достаточно далеко, то обнаружили бы именно это.

В инфляционной мультивселенной есть резкий раздел между вселенными. Они являются дырками в космическом сыре, отделёнными друг от друга «сырно-заполненными» областями, в которых значение поля инфлатона остаётся большим. Поскольку «сырно-заполненные» промежуточные области до сих пор испытывают инфляционное расширение, дочерние вселенные, выросшие из пузырьков, быстро удаляются друг от друга со скоростью разбегания, пропорциональной объёму расширившегося пространства между ними. Чем дальше они удаляются, тем выше скорость расширения: в итоге удалённые пузырьки-вселенные разлетаются быстрее, чем скорость света. Даже при неограниченных технологиях и длительности жизни нет никакого способа преодолеть подобный раздел. Бол