Сквозь зеркало языка — страница 21 из 26


Чувствительность (нормализованная) коротковолновых, средневолновых и длинноволновых колбочек как функция длины волны


Мозг выясняет, какой цвет он видит, сравнивая пропорции, в которых поглощаются фотоны в трех разных типах колбочек. Но существует бесконечное множество разных спектральных распределений, которые дают точно те же пропорции, и мы не сможем их различить. Например, монохроматический желтый свет на длине волны 580 нм дает точно такую же пропорцию поглощения, как сочетание красного света на 620 нм и зеленого на 540 нм, о чем говорилось выше. И существует бесконечное число других таких же «метамерных цветов», различных спектральных распределений, которые дают такую же пропорцию поглощения среди трех типов колбочек и таким образом для глаза человека выглядят одинаково.

По этой причине важно осознавать, что наш диапазон цветовых ощущений определяется не напрямую разными монохроматическими цветами спектра, но скорее диапазоном различным образом составленных пропорций между тремя типами колбочек. Наше «цветовое пространство» трехмерное, и оно содержит ощущения, которые не соответствуют ни одному цвету радуги. Наше ощущение розового, например, создается пропорцией поглощения, которая не соответствует ни одному монохромному свету, а скорее сочетанию красного и голубого света.

Когда ночью угасает свет, в игру вступает другая зрительная система. Колбочки недостаточно чувствительны для восприятия света очень низкой интенсивности, но есть и другие рецепторы, называемые палочками, которые настолько чувствительны, что могут регистрировать поглощение даже единичных фотонов! Палочки наиболее чувствительны к сине-зеленому свету около 500 нм. Наше зрение для низкой освещенности, однако, нецветное. Это не потому, что сам цвет ночью «забывает» свою длину волны, а просто из-за того, что палочки все одного типа. Поскольку мозгу не с чем сравнивать ответы от единственного типа палочек, то и никакого цветового ощущения не может быть.

Чувствительность к волнам разной длины

Всего в сетчатке около шести миллионов колбочек, но количество у трех типов там совсем не равное: есть относительно немного коротковолновых (фиолетовых) колбочек, более чем в десять раз больше средневолновых (зеленых) и еще больше длинноволновых. Сильно превосходящее число средне– и длинноволновых колбочек означает, что глаз более эффективно поглощает свет длинноволновой половины спектра (желтый и красный), чем коротковолновой половины, поэтому, чтобы заметить желтый свет, требуется меньшая его интенсивность, чем синего или фиолетового. Вообще наше дневное зрение имеет максимум чувствительности на свет в 555 нм, желто-зеленый. Такова уж особенность нашего строения, что делает желтый более ярким для нас, чем синий или фиолетовый, независимо от свойств, присущих свету как таковому, так как синий свет сам по себе не менее интенсивен, чем желтый. (Длина волны и энергия находятся в обратной зависимости: длинноволновой красный свет имеет самую низкую энергию, у желтого энергия выше, чем у красного, но зеленый и синий имеют более высокую энергию, чем желтый. У невидимого ультрафиолетового света энергия еще выше, она даже достаточна для того, чтобы повредить кожу.)

В нашей цветовой чувствительности есть и другая неравномерность: наша способность пренебрегать тонкими различиями в длине волн неодинакова для разных частей спектра. Мы особенно чувствительны к разной длине волны в области желтого-зеленого, а причина тому опять же лежит в случайных особенностях нашей физиологии. Поскольку средневолновые (зеленые) и длинноволновые (желтые) рецепторы очень близки по своим пикам чувствительности, даже минимальные отклонения в длине волны в желтозеленой области превращаются в значительные изменения в пропорциях света, поглощаемого двумя соседними колбочками. При оптимальных условиях нормальный человек может провести различия между желтыми оттенками, отличающимися по длине волны всего на один нанометр. Но в синей или фиолетовой части спектра наша способность различать разные длины волн в три раза слабее. А на другом, красном, краю спектра мы оказываемся еще менее чувствительны к отличиям длин волны, чем на синем.

Эти два типа неравномерности в нашей цветовой чувствительности – ощущение разной яркости и меняющаяся способность ощущать тонкие отличия в длине волны – делают наше цветовое пространство асимметричным. И, как упомянуто в сноске на стр. ХХХ, из-за этой асимметрии некоторые деления цветового пространства лучше, чем другие, усиливают сходство внутри понятия и снижают его между понятиями.

Цветовая слепота

Когда отказывает один из трех типов колбочек, это превращает различение цветов из трехмерного в двумерное, и это состояние называется дихромазия. Наиболее частый вид дихромазии обычно называется красно-зеленой слепотой (дальтонизмом). Она поражает около 8 % мужчин и 0,45 % женщин. У них отсутствует один из двух соседствующих типов колбочек (длинноволновые или средневолновые). Об истинных ощущениях людей с цветовой слепотой мало известно, потому что нельзя просто «перевести» ощущения дихроматиков прямо в то, что чувствуют трихроматики. Изредка случается так, что красно-зеленый дефект поражает только один глаз, а во втором сохраняется нормальное цветовое зрение. Несколько таких людей изложили свои впечатления. Сравнивая то, что видит дефектный глаз, со здоровым, такие люди говорят, что он воспринимает желтый и синий. Но поскольку нервные пути, идущие от нормального глаза, могут быть в их случаях ненормальными, то интерпретировать такие отчеты не так-то просто.

Другие типы цветовой слепоты встречаются гораздо реже. Другой тип дихромазии, называемый тританопия, или, в просторечии, сине-желтая слепота, бывает у людей, у которых нет коротковолновых (синих) колбочек. Ею страдает лишь 0,002 % населения (двое из ста тысяч). Более серьезный дефект – нехватка двух типов колбочек. Страдающие им называются монохроматиками, потому что у них есть только один работающий тип колбочек. Еще более крайний случай – это палочковые монохроматики, у которых нет ни одного типа колбочек, и они полагаются только на палочки, которые служат прочим людям для ночного зрения.

Эволюция цветного зрения

Человеческое цветное зрение развивалось независимо от такового у насекомых, птиц, рептилий и рыб. Мы разделяем наше трихроматическое зрение с человекообразными и другими обезьянами Старого Света, но не с прочими млекопитающими, и это наводит на мысль, что нашему цветному зрению 30–40 миллионов лет. У большинства млекопитающих дихроматическое зрение: у них только два типа колбочек, один с пиком чувствительности в сине-фиолетовой области и второй с пиком в зеленой (средневолновые колбочки). Думается, что трихроматическое зрение приматов произошло от дихроматического путем мутации, которая сдублировала ген и расщепила исходный средневолновой (зеленый) рецептор на два, причем новый был немного сдвинут в желтую сторону. Положение двух новых рецепторов было оптимальным для поиска желтоватых фруктов на фоне зеленой листвы.

Цветное зрение человека, похоже, эволюционировало сопряженно с развитием яркости фруктов. Как заметил один ученый, «слегка преувеличивая, можно сказать, что наше трихроматическое зрение – это приспособление, внедренное некоторыми фруктовыми деревьями для своего размножения».[300] В частности, похоже, что наше трихроматическое цветное зрение эволюционировало вместе с некоторыми тропическими деревьями, у которых плоды слишком крупные для того, чтобы их могли унести птицы, и плоды эти в зрелом виде желтые или оранжевые. Такое дерево подает цветовой сигнал, видимый для обезьяны, но замаскированный листвой для остальных обитателей леса, обезьяна же выплевывает неповрежденные семена на некотором расстоянии от дерева или выделяет их вместе с удобрением. Короче, обезьяны для окрашенных фруктов – то же, что пчелы для цветов.

Непонятно, был ли переход от дихромазии к трихромазии постепенным или резким, в основном потому, что, когда появился третий тип колбочек, потребовался дополнительный нервный аппарат для получения пользы от сигналов, приходящих от них. Однако ясно, что чувствительность к цвету не могла развиваться непрерывно от красного к фиолетовому концу спектра, как утверждал Гуго Магнус. На самом деле, если рассматривать отрезок времени в сотни миллионов лет, развитие шло прямо противоположным путем. Самый древний тип колбочек, появление которого уходит во времена до млекопитающих, это тот, у которого пик чувствительности на сине-фиолетовом краю спектра и совсем нет чувствительности к желтому и красному свету. Второй по времени появления тип колбочек – с зеленым пиком, продвинувший чувствительность глаза дальше к красному краю спектра. И самый молодой тип колбочек, которому от 30 до 40 миллионов лет, имеет пик чувствительности немного дальше в красную сторону, в желто-зеленом, и еще больше усиливает чувствительность глаза к длинноволновой части спектра.

Фотошоп в мозгу

Насколько я знаю, все, что говорилось до сих пор о колбочках в сетчатке, верно. Но если у вас сложилось впечатление, что это действительно объясняет наше чувство цвета, то вы обманываетесь. Колбочки – всего лишь первый уровень в очень сложном и до сих пор малопонятном процессе нормализации, компенсации и стабилизации – мозгового эквивалента функции «мгновенное исправление» (instant fix) программ для редактирования изображений.

Вы никогда не задумывались, почему дешевые камеры постоянно искажают цвета? Почему, например, когда вы снимаете ими при искусственном свете в помещении, все цвета вдруг оказываются не теми? Почему все становится неестественно желтым и почему синие предметы теряют свое великолепие и сереют? Так вот, это врет не камера, а ваш мозг. В желтоватом свете ламп накаливания объекты действительно становятся более желтыми, а синие действительно сереют – или, по крайней мере, это покажет любой объективный измерительный прибор. Цвет любого объекта зависит от распределения длин волн, которые он отражает, но длины отраженных волн, естественно, зависят от длины волн источника света. Когда в освещении увеличена доля света на определенной длине волны, например больше желтого света, объекты неизбежно отражают свет с увеличенной долей желтого. Следовательно, если бы мозг принимал сигналы от колбочек в тех пропорциях, в которых они поступают, мы бы воспринимали мир как серию снимков с дешевого аппарата, а цвета объектов все время менялись бы в зависимости от освещения.