ое животное имеет 5 832 (18 x 18 x 18) соседей — множество возможных правнуков, прабабушек, кузин и т. д.
В чём смысл этих размышлений в понятиях генетического пространства? Что это нам даёт? А то, что они выводят нас на путь понимания эволюции, как постепенного, нарастающего процесса. В любой поколении, согласно правилам компьютерной модели, можно сделать только один шаг в генетическом пространстве. За 29 поколений в генетическом пространстве нельзя продвинуться дальше, чем на 29 шагов от прародителя. Каждая эволюционная история состоит из конкретной трассы или траектории в генетическом пространстве. Случай эволюционной истории, зафиксированной в рисунке 4 — конкретная извилистая траектория в генетическом пространстве, подводящая к точке с насекомым и проходящая через 28 промежуточных стадий. Именно это я имел в виду, когда метафорически говорил о своих «блужданиях» по Стране Биоморфов.
Я хотел было представить это генетическое пространство в виде картины. Но вот проблема — картины двумерны. Генетическое пространство с биоморфами — не двумерное. И даже не трёхмерное. Это — девятимерное пространство! (Важно не пугаться высоколобого математического понятия. Это не так трудно, как математические снобы иногда подают. Всякий раз, когда я чувствую робость, я всегда вспоминаю изречение Сильвануса Томпсона про облегчение исчислений: «Что может сделать один дурак, может сделать и другой»). Если бы мы могли рисовать девятимерные картины, мы могли бы соотнести каждую размерность с каждым из девяти генов. Позиция конкретного животного, скажем, «Скорпиона» или «Летучей мыши» или «Насекомого», фиксирована в генетическом пространстве числовыми значениями его девяти генов. Эволюционные изменения состоят из пошаговой прогулки по девятимерному пространству. Величина генетической разности между животными, и следовательно — время, потребное на эволюцию и сложность перехода от одного животного до другого, может быть измерена как расстояние в девятимерном пространстве между ними.
Увы, мы не можем рисовать девятимерные картины. Я искал обходные пути, чтобы на двумерном рисунке передавалось некое ощущение движения из точки в точку девятимерного генетического пространства Страны Биоморфов. Есть несколько способов сделать это. Я выбрал способ, который я называю трюком треугольника. Посмотрите на рисунок 6. В трёх углах треугольника имеются три произвольно выбранных биоморфа. Тот, что сверху — наше основное дерево; слева — одно из «моих» насекомых; справа — не имеет названия, но я думаю, что оно симпатично. Как и все биоморфы, каждый из них имеет свою генетическую формулу, которая определяет его уникальное положение в девятимерном генетическом пространстве.
Треугольник лежит на двумерной «плоскости», которая пронизывает девятимерный гиперобъём (что может сделать один дурак, то может делать и другой).
Рис. 6.[10]
Плоскость подобна плоскому листу стекла, погруженному в желе. На стекле нарисован треугольник, а также некоторые биоморфы, чья генетическая формула даёт им право находиться на этой конкретной плоскости. Что даёт им такое право? Такое право дают им эти три биоморфы в углах треугольника. Они называются якорными биоморфами.
Вспомним, что идея «расстояния» в генетическом «пространстве» предполагает, что наследственно подобные биоморфы — это близкие соседи, а наследственно отличные биоморфы — далёкие. На этой конкретной плоскости все расстояния рассчитаны относительно трёх якорных биоморф. Для любой заданной точки на пластине стекла, будь то внутри треугольника или вне его, соответствующая генетическая формула этой точки рассчитана как «средневзвешенное» значение генетических формул трёх якорных биоморф. Вы уже можете предположить, как этот вес вычислен. Он вычислен по расстояниям на странице; точнее — степени близости рассматриваемой точки ко всем трём якорным биоморфам. Так, чем ближе вы к насекомому на плоскости, тем больше «насекомоподобие» данной биоморфы. А чем ближе вы продвигаетесь по стеклу к дереву, тем сходство с насекомым слабеет, но усиливаются древовидные черты. Если вы двинетесь в центр треугольника, то обнаружите животных, например, паука с еврейскими семи-веточными канделябрами на голове, которые будут различными «генетическими компромиссами» между тремя якорными биоморфами.
Но этот подход делает слишком много чести этим трём якорным биоморфам. Можно будет предположить, что компьютер использовал их для вычисления соответствующих генетических формул каждой точки на картине. Но на самом деле любые три якорные точки на плоскости могли бы сыграть ту же роль и дали бы идентичные результаты. Поэтому на рисунке 7 нет явно нарисованного треугольника. На рисунке 7 приведено примерно то же самое, что и на рисунке 6, там только показана другая плоскость. То же самое «насекомое» находится в одном из трёх якорных точек, на сей раз в правой. Другие якорные точки здесь — это «Спитфайр» и «цветок Офрис», оба — в точности, как на рисунке 5. На этой плоскости также легко заметить, что граничащие биоморфы похожи друг на друга больше, чем отдалённые. «Спитфайр» в частности, входит в эскадру подобных самолётов, летящих строем. Поскольку «насекомое» находится на обеих пластинах стекла, то вы можете полагать эти две плоскости пересекающимися под углом одна другую. По отношению к рисунку 6, плоскость рисунка 7, как говорят, «повёрнута» по оси, проходящей через «насекомое».
Рис. 7.[10]
Убрав треугольник, мы усовершенствовали наш метод, потому что он только отвлекал. Он придавал незаслуженные привилегии трём конкретным точкам плоскости. Но нужно сделать ещё одно дальнейшее усовершенствование. В рисунках 6 и 7, геометрическое расстояние отражает генетическое, но масштаб перекошен. Один дюйм по вертикали может не быть эквивалентен одному дюйму по горизонтали. Чтобы его выправить, мы должны тщательно выбирать наши три якорные биоморфы, чтобы генетические расстояния между ними были одинаковы. На рисунке 8 именно это и сделано. Снова сам треугольник не нарисован. Три якоря — «скорпион» с рисунка 5, опять «насекомое» (здесь мы сделали ещё один поворот через «насекомое») — и довольно невнятный биоморф вверху. Эти три биоморфа отделены друг от друга 30 мутациями. Это означает, что каждому из них одинаково легко развиться до любого другого. Во всех трёх вариантах должно быть предпринято как минимум 30 генетических шагов. Внизу рисунка 8 нанесена шкала расстояний в генах. Вы можете рассматривать её как генетическую линейку. Линейка применима не только по горизонтали. Вы можете наклонить её в любую сторону и измерять генетическое расстояние — и следовательно, минимум эволюционного времени между любыми точками на листе или чём-то другом (к моей досаде, что это не совсем верно на странице книги, потому что компьютерный принтер искажает пропорции, но этот эффект не настолько велик, чтобы шуметь по его поводу, хотя он означает, что вы получите слегка неточный ответ, если просто примените эту линейку не по горизонтали.
Рис. 8.[10]
Это двумерные сечения девятимерного генетического пространства дают некоторое представление о том, что означает — ходить по Стране Биоморфов. Чтобы дополнить это представление, нужно помнить, что эволюция не ограничена одной плоскостью. В настоящем эволюционном путешествии, вы могли бы в любое время «провалиться насквозь», на другую плоскость, например — из плоскости рисунка 6 на плоскость рисунка 7 (вблизи «насекомого», где эти две плоскости проходят вблизи друг от друга).
Я сказал, что «генетическая линейка» на рисунке 8 позволяет нам вычислить минимальное время для эволюции от одной точки до другой. Так оно и есть, учитывая ограничения изначальной модели, но следует подчеркнуть слово минимум. Так как «насекомое» и «скорпиона» отделяют 30 генетических единиц, то потребуется всего 30 поколений, чтобы одному проэволюционировать до другого, однако только если вы никогда не выберете неправильный поворот, то есть, вы точно знаете, к какой генетической формуле вы стремитесь и каким путём идти к ней. В реальной эволюции нет ничего, что бы соответствовало знанию пути к определённой далёкой генетической цели.
Давайте теперь применим биоморфы, чтобы вернуться к идее, ранее проиллюстрированной обезьяной, печатающей Гамлета — идее важности постепенных, пошаговых изменений в эволюции, как антитезе прямой спонтанности. Давайте попробуем переградуировать масштабную линейку внизу рисунка 8 в других единицах. Вместо расстояния в «количестве генов, должных измениться в ходе эволюции», мы будем измерять расстояние как «вероятность проскочить это расстояние за один раз — на тупом везении». Для этого нужно сейчас ослабить одно ограничение, в которые я ввёл в компьютерную игру — и в конце мы увидим зачем я ввёл это ограничение одним из первых. Ограничение состояло в том, что детям «позволялось» отстоять от родителей только на одну мутацию. Другими словами, только одному гену позволялось мутировать в данной смене поколений, и этому гену разрешалось изменить его «значение» только на +1 или -1. Снимая это ограничение, мы теперь разрешаем любому количеству генов мутировать одновременно, и им можно добавлять любое число, положительное или отрицательное, к своему текущему значению. Впрочем, «любое» подразумевает от плюс до минус бесконечности, а это уж пожалуй, слишком. Есть смысл ограничиться одноразрядными числами значений гена, в пределах от -9 до +9.
Итак, в этих широких пределах, мы разрешаем мутацию, которая за один раз, в одном поколении, может изменить любую комбинацию из наших девяти генов. Кроме того, значение каждого гена может изменяться с любым шагом, лишь не выводящим его значение за пределы от -9 до +9. Что это значит? Это значит, что эволюция может теоретически проскакивать, за единственное поколение от любой точки Страны Биоморфов, до любой другой. Не только до любой точки на плоскости, но и до любой точки во всём девятимерном гиперобъёме. Например, если вы хотите проскочить за одно поколение от «насекомого» до «лисы» в рисунке 5, то следуйте такому рецепту: прибавьте нижеуказанные величины к значениям генов, с номерами соответственно от 1 до 9: -2, 2, 2, -2, 2, 0, -4, -1, 1. Но так как мы рассматриваем случайные прыжки, то значит, все точки в Стране Биоморфов равновероятны как цель для любого из этих скачков. Легко вычислить шансы на то, что случайный прыжок приведёт нас в любую другую точку, кроме нашей намеченной «лисы». Это просто общее количество биоморф в пространстве. Вы уже чувствуете, что нам предстоит вычислить ещё одно астрономически большое число? У нас есть девять генов, каждый из которых может принимать любое из 19 значений. Тогда общее число биоморф, к которым мы можем перескочить за один шаг — это 19, умноженное само на себя 9 раз или 19 в степени 9, что составит порядка полтриллиона биоморф.