Слесарное дело — страница 72 из 82

В практике работы ремонтных предприятий широкое применение имеет холодное осталивание на переменном токе. При этом электролиз ведется при повышенной плотности тока, в результате чего увеличивается производительность процесса по сравнению с обычным осталиванием в 3–4 раза, улучшается сцепляемость покрытия с основным металлом, повышается предел выносливости, улучшаются условия труда.

Осталивание деталей в ванне применяется для восстановления небольших и несложной формы деталей. Для осталивания крупных и сложной формы деталей требуются ванны больших размеров, сложные подвески, кроме того, возникает необходимость изолировать значительные поверхности, не подлежащие осталиванию, и др.

Для осталивания крупных деталей используют метод вневанного осталивания.

Сущность процесса вневанного электролиза заключается в том, что восстанавливаемая поверхность при помощи дополнительных устройств превращается в замкнутую электролитическую ячейку, через которую насосом прокачивается электролит из основной ванны.

Интенсивное обновление электролита, равномерное распределение тока повышенной плотности способствуют получению осадка повышенной прочности, плотности и снижению в нем остаточных напряжений.

При безванном электролизе к неподвижной детали поочередно подаются соответствующие растворы и промывочные воды, что способствует автоматизации процесса. При этом достигается большая равномерность покрытия, позволяющая наращивать изношенную поверхность «в размер». Производительность этого процесса — в 3–4 раза выше обычного.

Струйный способ нанесения покрытия применяется для восстановления обхватываемых поверхностей. Электролит из основной ванны 4 (рис. 21.13), подогреваемый обогревателем 5, насосом 1 подается на поверхность восстанавливаемой детали-катоду через отверстия в специальной насадке 2, которая является фигурным анодом. В ванне 3, подведенной под восстанавливаемую шейку вала, всегда поддерживается постоянный уровень электролита. Для обеспечения равномерности отложения металла деталь медленно вращают.

Рис. 21.13. Схема установки для безванного струйного хромирования шеек вала:

1 — насос; 2 — анод (насадка); 3 — ванночка; 4 — основная ванна; 5 — подогреватель

Проточный способ нанесения покрытия аналогичен струйному и применяется для восстановления обхватывающих поверхностей (внутренних поверхностей цилиндров блоков, отверстий под подшипники в картерах, корпусах и др.).

Гальваническое электронатирание находит широкое применение при восстановлении неподвижных посадок с износом до 0,1 мм. Преимущество этого способа по сравнению с обычным ванным электролизом заключается в простоте оборудования, применении высоких плотностей тока, в высокой производительности процесса.

К соединенной с катодом медленно вращающейся детали 8 (рис. 21.14) прижимается анодный тампон 5, непрерывно смачиваемый электролитом, поступающим из резервуара 1. При включении тока в области контакта детали с анодом происходит электролиз, в процессе которого на поверхности детали образуются мелкозернистые, плотные и твердые покрытия из хрома, железа, никеля, меди, цинка.

Рис. 21.14. Схема электронатирания:

1 — резервуар с электролитом; 2 — кран; 3 — выпрямитель; 4 — анод; 5 — анодный тампон; 6 — пластмассовый колпачок; 7 — алюминиевый корпус; 8 — деталь (катод); 9 — ванна для сбора электролита; 10 — зажим; 11 — пластмассовая гайка; 12 — гибкий кабель

Анод изготовлен из нержавеющей стали по форме восстанавливаемой поверхности и обтянут тампоном из абсорбирующего материала толщиной 1,5–2,0 мм.

Процесс ведется при плотности тока 100–150 А/кв. дм и температуре, близкой к кипению электролита.

21.7. Применение полимеров и синтетических клеев

В практике ремонта машин увеличивается объем работ, выполняемых с применением полимеров и синтетических клеев, которые используются как склеивающие вещества и в качестве покрытия для восстановления изношенных поверхностей.

Клеевые соединения хорошо работают на сдвиг, отличаются достаточной водомаслобензостойкостью и герметичностью, а нанесенные покрытия имеют высокие износостойкость и антикоррозионную стойкость.

Применение полимеров и клеев снижает трудоемкость ремонтных работ, дает экономию черных и цветных металлов.

Качество, прочность соединения покрытия зависят от качества и толщины слоя клея, подготовки деталей к склеиванию, нанесению покрытия. Следует учесть, что остаточные напряжения, возникающие в отвердевшем клеевом соединении, могут вызвать его разрушение. Такие напряжения создаются при значительной толщине слоя, неравномерном нагреве деталей.

Марка клея или полимерных композиций подбирается с учетом материала склеиваемых деталей, их конструкций и условий работы.

При ремонте деталей применяются эпоксидные пасты, полимерные порошки, синтетические клеи. Эпоксидные пасты представляют собой полимерные композиции, основой которых является связывающее вещество — эпоксидная смола.

Для получения эпоксидной пасты в состав смолы вводят пластификатор, повышающий эластичность и ударную вязкость состава, отвердитель, превращающий жидкие полимеры в твердое состояние, и наполнители, придающие пасте необходимые физико-механические свойства.

При восстановлении деталей наибольшее распространение получила эпоксидная смола ЭД-6. Смола ЭД-5 имеет меньшую вязкость и применяется без наполнителя для заделки мелких трещин. В качестве пластификатора применяется дибутилфталат. Для отвердения пасты при температуре 20–25 °C используют полиэтиленополиамин. Более высокое качество соединения достигается при горячем отвердении (120–150 °C); в этом случае в качестве отвердителя применяют фталевый, или малеиновый, ангидрид.

В зависимости от назначения пасты в качестве наполнителей применяют тонкоизмельченные порошки (стали, чугуна, алюминия, слюды и др.) и волокнистые материалы (стекловолокно, бязь и др.). Пасты отвердевают при температуре 18–20 °C в течение 24 ч. Эпоксидными пастами заделывают трещины и пробоины на деталях из различных материалов, восстанавливают изношенные поверхности, устраняют неровности на поверхности кабин, деталях оперения, герметизируют сварные швы.

Заделка трещин эпоксидной пастой выполняется в такой последовательности: сначала готовят трехкомпонентную композицию, для чего в смолу ЭД-6, нагретую до 60–90 °C, вводят пластификатор, затем наполнитель, все время перемешивая состав. Смесь охлаждают до 18–20 °C и хранят в закупоренном виде.

На концах трещины сверлят отверстия диаметром 2,5–3 мм, снимают фаски под углом 60–70° на глубину не более 1/2 толщины стенки, зачищают участок по обе стороны трещины на 40–50 мм до металлического блеска, создавая при этом шероховатость, дважды обезжиривают ацетоном с просушкой в течение 8–10 мин и проверяют качество подготовки поверхности капельной пробой.

После этого окончательно готовят необходимую порцию пасты, для чего в трехкомпонентную композицию вводят отвердитель. Пасту наносят на зачищенный вдоль трещины участок, при длине трещины более 30 мм ставят накладку из стекловолокна (рис. 21.15). Для удаления воздуха и лучшего прилегания накладок каждый слой прокатывают роликом.

Рис. 21.15. Схема заделки трещин: 1 — деталь; 2 — накладка; 3 — клеевой состав

Время между окончательным приготовлением пасты и нанесением ее на поверхность не должно превышать 20–30 мин. После сушки деталь проверяют на герметичность.

Трещины длиной более 200–300 мм заделывают так, как указано выше, — с постановкой медных резьбовых штифтов диаметром 6–8 мм вдоль всей трещины.

На пробоины в деталях накладывают стеклотканевые и металлические накладки внахлестку или заподлицо. Небольшие пробоины (площадью 1–2 см2) заполняют только пастой. При сложной форме поверхности детали по контуру пробоины сверлят отверстия и при помощи медной проволоки создают сетку, на которую наносят пасту из нескольких слоев стеклотканевых накладок. По этому способу заделывают трещины и пробоины на водяных рубашках блоков и головок цилиндров, картерах сцепления, редукторах, баках и других деталях.

Прессовую посадку деталей, приварку их или закрепление другими способами можно заменить склеиванием эпоксидной пастой. Для этого детали зачищают, обезжиривают, наносят один слой пасты, затем сопрягают детали и сушат их.

Нанесением эпоксидных паст восстанавливают посадочные поверхности картеров, катков и других деталей, для чего на подготовленную поверхность шпателем или кистью наносят слой пасты, который после сушки механически обрабатывают.

Нанесением тонкослойных покрытий из полимеров восстанавливают поршни амортизаторов, цилиндры тормозов и другие детали. Восстановление деталей тонкослойными покрытиями производится методами напыления холодного взвихренного полимерного порошка на горячую деталь, газопламенного и газоструйного напыления и др.

Схема установки для нанесения покрытия на изношенный вкладыш методом газоструйного напыления показана на рис. 21.16. Вкладыш 3, установленный на оправку 2, электроподогревателем 1 нагревается до температуры 240–250 °C. Сжатым воздухом, подогретым в камере печи, порошок полимера из распылителя 5 напыливается на вкладыш. Частицы порошка, соприкасаясь с нагретой до 240 °C поверхностью, расплавляются и образуют сплошное покрытие. Для нанесения и наплавления тонкослойных покрытий используют полиэтилен, полистирол, капрон, капролактан и другие полимеры.

Рис. 21.16. Схема установки для напыления пластмассы на вкладыш подшипников:

1 — электроподогреватель; 2 — оправка с терморегулятором; 3 — вкладыш; 4 — теплоизоляция; 5 — распылитель; 6 — воздухопроводы; 7 — ресивер; 8 — компрессор; 9 — масловлагоуловитель; 10 — контакты нагревателя

Синтетические клеи используют для восстановления неподвижных соединений, склейки, наклейки различных материалов, заделки трещин и заплат.

При ремонте деталей применяют клеи БФ, ВС-10Т, ВК-350, клей-эластомер ГЭН-150 (В) и др.