Сочинения в двух томах. Том 1 — страница 134 из 140

(4) Утверждение Декарта о том, что он употребляет термин интуиция в значении, отличном от общепринятого, не было голословным. Действительно, подход Декарта к проблеме интуиции заметно отличался от подходов, выработанных схоластиками, а) Для поздней схоластики, в которой этой проблеме уделялось беспрецедентное внимание, стала типичной расширительная трактовка термина «интуиция», обычно затруднявшая четкре различение чувственной и интеллектуальной интуиции (так, по словам Жана из Мирекура (ум. после 1347), «любая интуиция есть какой-то опыт» (Giovanni di Mirecourt. Questioni inedite sulla conoscenza/A cura di A. Franzinelli//Rivista critica di storia della filosofia. 1958. An. 13. P. 430), а по сходному определению Жана Жерсона (ум. 1429), интуитивное познание в широком смысле есть «то же самое, что опыт или опытное восприятие» (Gerson J. Collectorium super Magnificat. Tract. V. Pars 2//Idem. Oeuvres completes/Ed, par Glorieux. Vol. 8. Paris, 1971. P. 255)). Декарт же подразумевал под интуицией ума не опыт вообще, а лишь достоверный интеллектуальный опыт; при этом, считая излишними позднесхоластические дистинкции между особой (specialis) и естественной (naturalis) достоверностью, Декарт склонялся к унитарному пониманию достоверности, предполагавшему отрицание ее градаций, б) Отличая интуитивное познание от абстрагированного, многие схоластики (в том числе Дуне Скот и его последователи) полагали, что посредством интуиции может быть постигнута экзистенциальная, а не сущностная определенность объекта (по словам Дунса Скота, «интуитивное познание есть познание объекта, поскольку объект присутствует в актуальном существовании» (Ioannes Duns Scotus. Ordinatio I. Dist. 2. Pars 2. Q. 4//Idem. Opera omnia. T. 2. Civitas Vaticana, 1950. P. 352, 8–9)). И по мнению Уильяма Оккама, интуитивное познание, будучи «весьма неполным и смутным» (Guillelmus de Ockham. Scriptum in librum primum Sententiarum, Ordinatio I. Prologus. Q. I/Ed. G. Gal et S. Brown///dem. Opera philosophica et theologica. Vol. 1. St. Bonaventure, New York, 1967. P. 33, 9), позволяет судить о существовании или несуществовании познаваемой вещи, но не о ее сущности. Согласно же Декарту, интуитивное познание предполагает не только констатацию наличия и существования познаваемой вещи, но и ясное и отчетливое постижение ее сущности, что обусловливается неразрывной взаимосвязью акта интуиции и ее объекта (не случайно Декарта мало беспокоила волновавшая оккамистов проблема интуитивного познания несуществующих объектов). в) Выделяя наряду с совершенным интуитивным познанием «налично существующих» объектов несовершенное интуитивное познание еще или уже не существующих вещей, включающее в себя предвидение будущего и в особенности воспоминание прошлого, Дунc Скот, Оккам и их последователи допускали, что интуитивным познанием — совершенным и несовершенным — охватываются все три модуса времени. Согласно же Декарту, интуитивное познание, будучи направленным только на настоящее, не может быть несовершенным.

(5) Если в качестве основных компонентов системы научного знания традиционно допускались интуитивно познаваемые умом первоначала (см., напр., Аристотель. Вторая аналитика II 19, 100 b 12; Никомахова этика VI 6, 1141 а 7–8) и дедуктивно выводимые «отдаленные» следствия, то Декарт выделял наряду с ними особую сферу научных положений, постигаемых «то посредством интуиции, то посредством дедукции». Ведь, хотя Декарт неоднократно подчеркивал необходимость четкого различения интуиции и дедукции, в «Правилах» явно прослеживается тенденция к систематическому сближению интуитивного и дедуктивного, т. е. дискурсивного, познания.

(6) Декарт, по всей видимости, еще в коллегии Ла-Флеш имел возможность ознакомиться с «Собранием» Паппа в латинском переводе Коммандино (Pappi Alexandrini Mathematicae collectiones a Federico Commandino Urbinate in latinum conversae, et commentariis illustratae. Pisauri, 1588) и с «Арифметикой» Диофанта в латинском переводе Ксиландера (Diophanti Alexandrini Rerum Arithmeticarum Libri sex… Item Liber De Numeris Polygonis seu Multiangulis… a Guil. Xylandro Augustano incredibili labore latine redditum, et commentariis explanatum. Basileae, 1575). Книги этих александрийских математиков III в. н. э. не только давали Декарту еще один повод для размышлений о «всеобщей математике», но и предоставляли обширный материал, имевший непосредственное отношение к ряду интересовавших Декарта математических проблем. Так, в сочинении Паппа помимо прочего было детально разработано понятие анализа (это обстоятельство стоит отметить, учитывая заверения Декарта в том, что в ученические годы он не изучал «Введение в аналитическое искусство» (1591) Ф. Виета), была изложена теория исчисления средних пропорциональных и сформулирована так называемая задача Паппа, заключающаяся в определении геометрического места к данным прямым (ее решению Декарт посвятил вторую книгу «Геометрии»). В «Арифметике» же Диофанта не только были поставлены теоретико-числовые задачи, которые вызвали живой интерес Декарта, Ферма и других видных математиков XVII в., но и, например, рассматривалась обсуждаемая в «Правилах для руководства ума» проблема сведения неопределенных уравнений высоких степеней к уравнениям первой или второй степени.

(7) Примечательно, что часть текста, начиная со слов Когда я впервые направил ум на математические дисциплины… (см. с. 88 наст, тома) и до конца «Правила IV», помещена в конце ганноверской копии (Шпрингмайер также выносит эту часть в приложение к основному тексту «Правил»). И именно в ней часто употребляется словосочетание всеобщая математика (Mathesis universalis), отсутствующее в первых четырех абзацах «Правила IV», в которых ключевым является слово «метод». Это дало одному из комментаторов основания для спорного вывода о том, что вторая часть данного «Правила» была написана Декартом раньше, чем первая, возможно, «между серединой октября и началом ноября 1619 г.» (Weber J. P. La constitution du texte des Regulae. Paris, 1964. P. 17). Проблема «метаматематики» начала волновать Декарта довольно рано, и вряд ли это было лишь кратковременным увлечением. Так, в письме к И. Бекману от 26 марта 1619 г. Декарт заявляет: «Я стремлюсь изложить не «Краткое искусство» Луллия, а совершенно новую науку, благодаря которой можно было бы в общем виде разрешить все вопросы, какие могут быть поставлены относительно любого рода величины, как непрерывной, так и прерывной» (Oeuvres X 156–157). По всей видимости, концепция «всеобщей математики» сыграла важную роль в разработке Декартом его общефилософской методологии. Идея «всеобщей математики», лежащей в основе всех математических наук, восходит к Аристотелю («Метафизика» VI 1, 1026 а 25–27; XI 7, 1064 b 8–9). Эта идея получила развитие в трудах Евклида, Ямвлиха, Прокла и др. (причем следует особо отметить значение комментария Прокла к первой книге евклидовых «Начал»), однако впоследствии интерес к ней ослабел. Он возродился лишь в XVI в., что не в последнюю очередь было связано с изданием в 1533 г. греческого текста «Комментария» Прокла, а затем и его латинского перевода (1560). Ученые XVI — нач. XVII в., занимавшиеся проблемой «метаматематики» (А. Пикколомини, К. Дасипо-дий, Б. Перейра, И. Г. Альштед и др.), так или иначе учитывали частые высказывания Прокла о «единой и всеобщей математике, заключающей в себе более простым образом начала всех отдельных наук» (Proclus Diadochus. In primum Euclidis Elementorum librum commentarii/Ex recognitione G. Friedlein. Lipsiae, 1873. P. 44, 2–4). Например, Конрад Дасиподий в «Protheoria mathematica» (1593) писал: «Прокл определяет всеобщую математику (universalem mathematicam) такими словами: существует, говорит он, некая всеобщая математическая наука, которая охватывает сразу все математические науки и которая, будучи первейшей из всех, с полным основанием превосходит прочие дисциплины и дает им свои начала» (цит. по: Crapulli G. Mathesis Universalis: Genesi di un'idea nel XVI secolo. Roma, 1969. P. 200). Само же название «mathesis universalis» употреблял бельгийский математик Адриан ван Ромен (1561–1615). В 7-й главе его сочинения «Apologia pro Archimede» (1597) «излагается идея некоей всеобщей математики (universalis matheseos), которую мы назовем первой математикой» (цит. по: Crapulli G. Op. cit. P. 213). Таким образом, у Декарта имелись достаточные основания для того, чтобы охарактеризовать название всеобщая математика как вновь вошедшее в употребление.

(8) В отличие от Аристотеля, называвшего наведение «восхождением от единичного к общему» («Топика» I 12, 105 а 13–14), Декарт не считал познание общего искомым результатом индуктивного заключения и рассматривал энумерацию, или индукцию, прежде всего как эффективный способ упорядочения и классификации исследуемых положений.

(9) Общее чувство (sensus communis) понимается Декартом как «часть тела», или место, в котором сходятся различные восприятия внешних чувств; причем в «Правилах» неоднократно отмечается пассивность чувственности в целом и общего чувства в частности. Понимание Декартом общего чувства заметно отличается как от аристотелевской концепции общего чувства, так и от ее схоластических интерпретаций. Согласно Аристотелю, общее чувство обрабатывает и «суммирует» восприятия, получаемые им от внешних чувств, познает общие чувственно воспринимаемые свойства (движение, покой, фигуру, величину и число), посредством выявления полезного и вредного, доброго и злого указывает, к чему надо стремиться и чего избегать, и, наконец, является восприятием восприятия. При этом Аристотель недвусмысленно отличает общее чувство (см. «О частях животных» IV 10, 686 а 31–32; «О душе» III 1, 425 а 27; «De memoria et reminiscentia» (О памяти и воспоминании) 1, 450 а 10–11) от его органа, или общего чувствилища, локализуемого в сердце (см., напр., «De juventute et senectute» (О молодости и старости) 1, 467 b 28–29; 3, 469 а 10–12). Все эти установки Стагирита оказали несомненное влияние и на теорию внутреннего чувства, разработанную Августином. Не случайно, подчеркивая функциональное единство интеллектуализированного внутреннего чувства, многие схоластики сближали эту теорию Августина с аристотелевской концепцией общего чувства (по словам августинианца XIII в. Роджера Марстона, общее чувство «Августин называет внутренним чувством» (Marston R. Quaestiones disputatae de aniraa. Q. 7//Bibliotheca franciscana scholastica medii aevi. T. 7. Ad Claras Aquas, 1932. P. 375)). Даже Фоме Аквинскому, обычно предпочитавшему аверроистскую классификацию внутренних чувств, подчас не была чужда унитарная интеллектуалис