ьной зоны до широты ±(10—15)°, а на более высоких широтах используют «систему II» с суточным периодом 9ч. 55мин. 40,632с. Разумеется, это лишь средние периоды вращения указанных областей; внутри каждой из них угловая скорость немного изменяется вдоль широты, причем весьма замысловато. В последнее время предпочтительной считается «система III», связанная с вращением магнитного поля планеты, имеющим период 9ч. 55мин. 30с.
Вся видимая поверхность Юпитера и детали, по которым определены периоды вращения, — это довольно плотные облака. Они образуют многочисленные полосы желто-коричневых, белых, красных и голубоватых оттенков. Полосы, охватывающие планету, как параллели, образуют системы темных поясов и светлых зон, сравнительно симметрично расположенных к северу и к югу от экватора.
Хотя пояса и зоны — постоянные образования на Юпитере, вид их довольно изменчив. Изменяется и общий оттенок Юпитера. Полосатая структура облачного покрова охватывает экваториальную часть планеты и доходит до широт ±40°. Севернее и южнее облака образуют поле с коричневыми и голубоватыми пятнами, по-видимому, циклонического характера, диаметром до 1 тыс. км.
На рис. слева внизу можно видеть и самую известную деталь Юпитера — Большое Красное Пятно (БКП). Это овальное образование изменяющихся размеров, расположенное в южной тропической зоне. Сейчас его размер в долготном направлении около 25 тыс. км., т.е. вдвое больше Земли, а в конце XIX в. оно было еще почти в два раза больше. БКП привлекает внимание яркой окраской, но ее контрастность изменчива. Впервые БКП как яркая деталь описано в 1878 г. Позже выяснилось, что наблюдатели рисовали его в своих журналах еще 300 лет назад. Периоды, когда Пятно становилось особенно заметным, отмечались в 1878—1882, 1893—1894, 1903—1907, 1911, 1914, 1919—1920 и в другие годы. Поиски какой-то периодичности не принесли результатов. Между периодами видимости БКП бледнеет и становится малозаметным. В красных лучах БКП вообще мало отличается от фона.
Особый интерес вызывает движение БКП. Почему-то период его обращения несколько больше периода светлой Южной тропической зоны, на которой оно находится, поэтому в своем движении Пятно несколько отстает от нее, запаздывая на один полный оборот примерно за 30 лет. Иногда там появляются другие детали, которые постепенно догоняют БКП, а через несколько недель появляются впереди Пятна.
Было высказано множество догадок о том, что такое БКП. Поскольку температура внешних слоев атмосферы (облачного слоя) очень низка, в одной из гипотез предполагалось, что БКП — это гигантский остров из льда, который плавает в атмосфере. Другие гипотезы связывали БКП с так называемой конвективной колонной, срез которой извне представляется Пятном. Но у Юпитера вообще нет поверхности в земном смысле. К тому же «шатания» Пятна по широте и долготе указывают, что оно вообще никак не связано с какой-либо поверхностью.
Плодотворной оказалась идея о том, что БКП — это долгоживущий свободный вихрь в атмосфере Юпитера. Вихрь такого размера и соответствующей массы с верхушкой в виде Красного Пятна может прожить тысячи лет. Согласно наблюдениям, движение деталей по поверхности Пятна действительно носит характер вихря. Появилось большое число гипотез в развитие идеи вихря. Образования, подобные БКП, связывают с существованием устойчивой одиночной волны в атмосфере — солитона. В этом случае БКП может быть очень долгоживущей деталью на облачной поверхности Юпитера.
Наблюдения с космических аппаратов подтвердили, что БКП — это гигантский долгоживущий вихрь в атмосфере планеты. Снимки, сделанные «Вояджерами» за дни пролета мимо Юпитера, были смонтированы в кадры кинофильма, где все движения ускорены в полмиллиона раз. Перед зрителем возникла шевелящаяся, ползущая масса поясов, зон и «плюмажей», подобных тем, что можно видеть на рис. Плюмажи, окантовки БКП и другие пятна огибают этот вихрь, срываются с него и уходят к западу. Светлые, расширяющиеся к западу полосы вдоль экваториального пояса напоминают полосы дыма, относимые ветром от источника. Темный экваториальный пояс в своем относительном движении к западу обгоняет южный умеренный пояс, а зажатое между ними Большое Красное Пятно вращается против хода часовой стрелки с периодом чуть более 6 сут.
На периферии БКП движение облаков имеет хаотический, турбулентный характер, но в центре движение спокойное. С периферией БКП связаны характерные голубые пятна; некоторые из них возникли сравнительно недавно, в 1939—40 гг. Возможно, это дочерние вихри, отделившиеся от Большого Пятна. Такие же небольшие пятна видны на поясах и зонах, расположенных южнее БКП, т.е. ближе к полюсу.
Юпитер почти целиком состоит из водорода и гелия — как внутри (на это указывают расчеты), так и снаружи (по прямым измерениям). В атмосфере Юпитера по данным «Вояджеров» 89% водорода и 11% гелия (по объему). Отношение 89:11 по объему для водородно-гелиевой смеси — это то же, что 80:20 по массе, так как масса атома гелия 4 а.е., а молекулы водорода 2 а.е. Измерения со спускаемого аппарата «Галилео» (1995 г.) дали немного большее содержание гелия, 24% по массе.
Водородно-гелиевая атмосфера Юпитера имеет огромную протяженность. Облачный покров расположен на высоте не менее 1000 км. над условной «поверхностью», где огромное давление вызывает постепенный переход вещества от газообразного состояния к жидкому. Облачный слой и, по крайней мере, верхняя часть атмосферы охвачены интенсивными вертикальными движениями, которые проявляются в характерной картине темных поясов и светлых зон Юпитера.
В атмосфере Юпитера практически нет меридиональных течений. Зоны и пояса — это области восходящих и нисходящих потоков в атмосфере, которые в долготном направлении имеют глобальную протяженность. Эти атмосферные течения, параллельные экватору, имеют некоторое сходство с пассатами Земли. Движущие силы в этой природной тепловой машине — потоки тепла, идущие из глубины планеты, энергия, получаемая от Солнца, а также быстрое вращение планеты. Видимые поверхности зон и поясов в таком случае должны находиться на разных высотах. Это было подтверждено тепловыми измерениями: зоны оказались холоднее поясов. Разница в температурах показывает, что видимая поверхность зон расположена примерно на 20 км. выше. БКП оказалось выше и на несколько градусов холоднее поясов. И, наоборот, голубые пятна оказались источниками тепловой радиации, восходящей из глубоких слоев атмосферы. Интересно, что не обнаружено существенной разности температур между полярными и экваториальными областями планеты. Косвенно это позволяет сделать такой вывод: внутреннее тепло планеты играет более важную роль в динамике ее атмосферы, чем энергия, получаемая от Солнца. Средняя температура на уровне видимых облаков близка к 130 К.
Еще по наземным наблюдениям астрономы разделили пояса и зоны в атмосфере Юпитера на экваториальные, тропические, умеренные и полярные. Например, БКП лежит в Южной тропической зоне. Поднимающиеся из глубин атмосферы нагретые массы газов в зонах под действием значительных на Юпитере кориолисовых сил вытягиваются в долготном направлении, причем противоположные края зон движутся навстречу друг другу, вдоль параллелей. На границах зон и поясов (области нисходящих потоков) видна сильная турбулентность; скорости движения здесь достигают наибольших значений, до 100 м/с, а в районе экватора даже 150 м/с. Севернее экватора потоки в зонах, направленные к северу, отклоняются кориолисовыми силами к востоку, а направленные к югу — к западу. В южном полушарии направление отклонений обратное. Именно такую структуру движений на Земле образуют пассаты. «Крыша» облаков в поясах и зонах находится на разных высотах. Различия в их окраске определяются температурой и давлением фазовых переходов малых газообразных составляющих. Светлые зоны — это восходящие колонны газа с повышенным содержанием аммиака, пояса — обедненные аммиаком нисходящие потоки. Яркая окраска поясов связана, вероятно, с аммонийными полисульфидами и некоторыми другими окрашивающими компонентами, например, фосфином.
Экспериментальные данные свидетельствуют, что динамика облачного слоя Юпитера — лишь внешнее проявление могучих сил, действующих в подоблачной атмосфере планеты. Удавалось наблюдать, как в облаках возникает мощное вихревое образование, местный ураган, диаметром в 1000 км. и более. Такие образования живут долго, по нескольку лет, а наиболее крупные из них — даже несколько сотен лет. Подобные вихри образуются, например, в результате движения больших масс поднимающегося нагретого газа в атмосфере. На рис. БКП видно большое число вихревых образований. Во многих случаях пятна имеют темную окантовку. Маленькие пятна живут менее 24 ч.
Возникший вихрь выносит на поверхность облаков нагретые массы газа с парами малых компонентов, чем замыкается цепь их кругооборота в атмосфере. Образующиеся кристаллы аммиачного снега, растворов и соединений аммиака в виде снега и капель, обычного водяного снега и льда постепенно опускаются в атмосфере и достигают такого уровня температуры, где испаряются. В газовой фазе вещество снова возвращается в облачный слой.
Как правило, в центре вихря давление оказывается более высоким, чем в окружающем районе, а сами ураганы были с запада окантованы возмущениями с низким давлением. В земных ураганах такого типа часто наблюдаются молнии. Снимки с «Вояджеров» показали, что на ночной стороне Юпитера наблюдаются световые вспышки колоссальной протяженности — до 1000 км. и более. Это сверхмолнии, энергия в которых намного больше, чем в земных. Выяснилось, однако, что юпитерианские молнии малочисленнее земных. Интересно, что молнии Юпитера были обнаружены через 3 месяца после открытия гроз на Венере.
Вихревые образования вроде пятен голубого и коричневого оттенков наблюдались не только в устойчивых поясах и зонах, но и в полярных районах Юпитера. Здесь характерный вид облачного слоя представляет светло-коричневое поле с темными и светлыми коричневыми и голубоватыми пятнами. Здесь, в области тех широт, где зональная циркуляция становится неустойчивой, пояса и зоны уступают место метеорологическим образованиям типа «кружевных воротников» и «плюмажей». Районы вблизи полюса планеты увидеть можно только с космических аппаратов. Кажущийся хаос пятен все же подчиняется общей закономерности циркуляции, причем определяющую роль играют движения в глубине атмосферы.