Рис. Астероид Ида со спутником Дактиль.
Эрос — сближающийся с Землей астероид. В феврале 1999 г. зонд NEAR получил его изображения. 14 февраля 2000 г. зонд стал спутником Эроса — первым в истории искусственным спутником астероида, — а 12 февраля 2001 г. сел на его поверхность.
Рис. Эрос.
Гаспра — изображения получены зондом «Галилео» 29 октября 1991 г. во время первого в истории сближения с астероидом.
Икарус — сближается с Землей и пересекает ее орбиту.
Географ — сближающийся с Землей астероид. Либо двойной, либо имеет очень неправильную форму (сильная переменность блеска и вытянутое радиолокационное изображение).
Аполлон — крупнейший астероид одноименного семейства, члены которого сближаются с Землей и пересекают ее орбиту.
Хирон — астероид-комета, демонстрирующий периодическую активность: яркость резко возрастает вблизи перигелия, вероятно, из-за испарения летучих соединений с поверхности. Движется между орбитами Сатурна и Урана. Прототип семейства кентавров.
Тоутатис — двойной астероид, компоненты которого, вероятно, находятся в контакте и имеют размеры около 2,5 и 1,5 км. Изображения получены радиолокаторами в Аресибо и Голдстоуне. Сближение Тоутатиса с Землей произошло 29 сентября 2004 г. на расстояние 1,5 млн. км.
Рис. Тоутатис.
Касталия — двойной астероид с одинаковыми компонентами (по 0,75 км. в диаметре), находящимися в контакте. Изображение получено радиолокатором в Аресибо.
Большой вклад в формирование современной теории происхождения Солнечной системы внесли советские ученые О.Ю.Шмидт (1891—1956), B.C.Сафронов (1917—1999) и их ученики. Идеи отечественной школы космогонистов помогают реконструировать историю астероидов главного пояса.
Около 4,5 млрд. лет назад на расстоянии 5 а.е. от Солнца одна из крупных планетезималей в ходе «естественного отбора» превзошла размером остальные и стала «зародышем» будущего Юпитера. Находясь на границе конденсации летучих соединений (Н2, Н2О, NH3, CO2, CH4 и др.), которые изгонялись из центральной, более теплой зоны протопланетного диска, это тело служило центром аккумуляции замерзающих газовых конденсатов. При достижении еще большей массы, оно стало захватывать вещество, находящееся ближе к Солнцу, в зоне родительских тел астероидов, и таким образом тормозить их рост.
Мелкие тела, попавшие в сферу гравитационного влияния прото-Юпитера, но не захваченные им, эффективно разбрасывались в разные стороны. Аналогично, хотя и не так интенсивно, происходил выброс тел из зоны формирования Сатурна. Двигаясь по вытянутым орбитам, выброшенные тела пронизывали пояс родительских тел астероидов между орбитами Марса и Юпитера, подвергая их дроблению. До возникновения планет-гигантов в этой области происходил рост родительских тел астероидов, поскольку их взаимные скорости были невелики (менее 0,5 км/с), и столкновение двух тел заканчивалось их объединением, а не дроблением.
Попадание в пояс астероидов быстрых объектов, выброшенных Юпитером и Сатурном, привело к тому, что относительные скорости возросли до 3—5 км/с. Процесс аккумуляции родительских тел астероидов сменился их взаимным разрушением, а возможность формирования большой планеты в этой области Солнечной системы исчезла навсегда.
Астероиды Главного пояса движутся по устойчивым орбитам, близким к круговым или слабо эксцентричным. Они находятся в «безопасной» зоне, где минимально гравитационное влияние на них больших планет, в первую очередь, — Юпитера. Считается, что именно Юпитер «виноват» в том, что на месте Главного пояса астероидов в период молодости Солнечной системы не смогла сформироваться крупная планета.
Впрочем, еще в начале XX в. многие ученые полагали, что между Юпитером и Марсом раньше существовала большая планета, которая по каким-то причинам разрушилась. Первым высказал эту гипотезу Ольберс, сразу после открытия им Паллады. Он же предложил назвать гипотетическую планету Фаэтоном. Однако современная космогония отказалась от идеи разрушения большой планеты: пояс астероидов, вероятно, всегда содержал множество небольших тел, объединиться которым мешало влияние Юпитера.
Этот гигант по-прежнему продолжает играть первостепенную роль в эволюции орбит астероидов. Его длительное (более 4 млрд. лет) гравитационное влияние на астероиды Главного пояса привело к тому, что возник ряд «запретных» орбит и даже зон, в которых малых тел практически нет, а если они туда и попадают, то не могут долго там находиться. Эти зоны называют пробелами (или люками) Кирквуда по имени Дэниела Кирквуда (1814—1895), впервые обнаружившего их в распределении периодов обращения всего нескольких дюжин астероидов.
Орбиты в люках Кирквуда называют резонансными, поскольку движущиеся по ним астероиды испытывают регулярное гравитационное возмущение со стороны Юпитера в одних и тех же точках своей орбиты. Периоды обращения по этим орбитам находятся в простых отношениях с периодом обращения Юпитера (например, 1:2, 3:7, 2:5, 1:3). Если какой-либо астероид, например, в результате столкновения с другим телом, попадает на резонансную орбиту, то ее эксцентриситет и большая полуось быстро меняются под влиянием гравитационного поля Юпитера. Астероид покидает резонансную орбиту и может даже уйти из Главного пояса. Таков постоянно действующий механизм «очистки» пробелов Кирквуда.
Однако заметим, что если изобразить мгновенное распределение всех астероидов Главного пояса, то никаких «щелей» мы не увидим. В любой момент времени астероиды достаточно равномерно заполняют пояс, поскольку, двигаясь по эллиптическим орбитам, они часто пересекают «запретные зоны».
Существует еще один, противоположный, пример гравитационного влияния Юпитера: у внешней границы Главного пояса астероидов есть две узкие «зоны», содержащие избыточное число астероидов. Периоды обращения в них находятся в пропорциях 2:3 и 1:1 с периодом обращения Юпитера. Ясно, что резонанс 1:1 означает, что астероиды движутся практически по орбите Юпитера. Но они не сближаются с гигантской планетой, а держат дистанцию, в среднем равную радиусу орбиты Юпитера. Эти астероиды получили имена героев Троянской войны. Те из них, которые в своем движении по орбите опережают Юпитер, называют «греками», а отстающую группу — «троянцами» (обе группы вместе часто называют «троянцами»). Движение этих малых тел происходит в окрестности «треугольных точек Лагранжа», где при круговом движении уравниваются гравитационные и центробежные силы. Важно, что при небольшом отклонении от положения равновесия возникают силы, стремящиеся вернуть объект на место, т.е. его движение происходит устойчиво.
В отличие от троянцев, которые могли постепенно накопиться в окрестностях точек Лагранжа в ходе длительной столкновительной эволюции астероидов, существуют иные семейства астероидов, скорее всего возникшие в результате относительно недавнего распада крупных родительских тел. Например, это семейство Флоры, включающее около 60 членов. Сейчас астрономы пытаются определить общее число таких семейств, чтобы оценить исходное количество родительских тел.
У внутреннего края главного пояса астероидов выделяются группы тел, орбиты которых вытянуты в центральную область Солнечной системы и могут пересекаться с орбитами Марса, Земли, Венеры и даже Меркурия. В первую очередь, это группы Амура, Аполлона и Атона (по именам их крупнейших членов). Орбиты этих астероидов уже не так стабильны, как у членов главного пояса: они быстро эволюционируют под влиянием не только Юпитера, но и планет земной группы. По этой причине астероиды могут переходить из одной группы в другую, а само их деление на вышеназванные группы довольно условно и основано на данных об их современных орбитах. Так, амурцы движутся по эллиптическим орбитам с расстоянием в перигелии не более 1,3 а.е. (но и не менее 1 а.е.). У аполлонцев это расстояние менее 1 а.е., т.е. они проникают внутрь земной орбиты. В то время, как у амурцев и аполлонцев большая полуось орбиты заметно превосходит 1 а.е., у атонцев она менее или порядка этой величины, поэтому они движутся в основном внутри земной орбиты.
Ясно, что аполлонцы и атонцы, пересекая орбиту Земли, создают угрозу столкновения. Существует даже общее название группы малых тел с большими полуосями орбит менее 1,3 а.е. — «объекты, сближающиеся с Землей» (near-Earth object, NEO). К 1 сентября 2006 г. таких объектов было обнаружено 4187. Из них 57 комет и 4130 астероидов (near-Earth asteroid, NEA). Около 1000 из них имеют размер более 1 км. и поэтому представляют потенциальную угрозу для всей биосферы Земли. Хотя в последние годы поиск подобных тел проводится очень активно, ясно, что их общее количество может быть заметно больше: до 1500—2000 размером более 1 км. и до 140000 размером более 100 м. (такие объекты грозят нам локальными катастрофами).
Рис. Итокава.
Один из астероидов, сближающихся с Землей, — 25143 Itokawa — уже изучен весьма подробно: рядом с этим 500-метровым телом в 2005 г. несколько месяцев работал японский зонд «Хаябуса». Дважды (20 и 25 ноября) он садился на поверхность астероида и пытался взять образцы грунта, но уверенности в том, что это удалось, нет. Тем не менее, экспедиция оказалась удачной: детально изучена поверхность астероида, измерена средняя плотность его вещества (2 г/см3), альбедо (0,53), период вращения (12 час.), скорость отрыва с поверхности (около 20 см/с). «Хаябуса» должен вернуться на Землю в 2010 г., возможно, с образцами грунта.
За орбитой Юпитера также существуют астероидоподобные тела. Более того, оказалось, что таких тел очень много на периферии Солнечной системы. (