Лучи Рентгена, проникая сквозь сетку, огибают атомы и рисуют узор на фотографической пластинке. Узор из темных пятнышек. Это не фотография кристалла. Но изучая этот узор, Лауэ с помощью математического расчета установил, как, в каком порядке расположены в кристалле атомы.
Лауэ и его сотрудники стали пропускать лучи Рентгена и через другие кристаллы — поваренную соль, берилл, сернокислый никель. И каждый раз на фотографической пластинке отпечатывался узор из темных точек. Поваренная соль давала один узор, берилл — другой, сернокислый никель — третий.
Значит, во всех этих веществах атомы расположены сетками в своем, строго определенном порядке. Порядок этот у разных веществ разный: у сернистого цинка — один, у поваренной соли — другой, у берилла, у алмаза, у никеля, у графита — третий, четвертый, пятый. Атомы натрия и хлора в поваренной соли расположены кубами, атомы углерода в алмазе — четырехгранными пирамидами.
Сами атомы — это чрезвычайно мелкие частицы вещества. Размеры атома — десятимиллионная доля миллиметра. Их невозможно разглядеть даже в сверхсильный микроскоп. Но с помощью лучей, открытых Рентгеном, физики узнали с абсолютной достоверностью, как расположены атомы в кристаллах. В каком порядке и даже — какое между ними расстояние. В 1913 году, через год после открытия Лауэ, русский физик Ю. Вульф и англичане, отец и сын Брэгги, один в России, а двое других в Англии, нашли — совершенно независимо друг от друга — способ с полной математической точностью определять в кристаллах расстояние между атомами. Оказалось,
определять его можно, направляя на кристалл под разными углами рентгеновские лучи и каждый раз измеряя при этом угол наклона.
Если бы сорок лет назад вы спросили любого ученого-физика, возможно ли разглядеть, как расположены атомы в каком-нибудь теле, он ответил бы вам: «Невозможно и никогда не будет возможно».
Открытие Рентгена еще раз доказало людям, что слово «невозможно» не имеет право существовать.
50 лет спустя
НЕБО В ИКС-ЛУЧАХ
По-разному делаются научные открытия. Путь к солнечному веществу — гелию — занял несколько десятилетий. А вот лучи Рентгена были открыты в считанные дни и сразу нашли себе замечательные применения. Невидимые лучи дали возможность видеть насквозь — разглядеть внутреннее устройство непрозрачных живых тел, а в прозрачных кристаллах обнаружить «непрозрачные» атомы. Но это еще не всё.
Икс-лучам суждено было разгадывать интереснейшие иксы не только в поле зрения микроскопа, но и телескопа. Если гелий «спустился» с небес на Землю, то рентгеновские лучи, напротив, совершили путь в обратном направлении — с Земли на небо.
Правда, увидеть небо в рентгеновском свете удалось впервые лишь через полвека после того, как в Вюрцбургской лаборатории появилось загадочное зеленовато-желтое сияние. Обыкновенный видимый свет свободно проходит через многокилометровую толщу земной атмосферы.
А для рентгеновских лучей она непрозрачна. К счастью, непрозрачна, — иначе туго пришлось бы живым существам, обитающим на Земле.
Однако те живые существа, которых природа наделила неукротимым желанием узнать о ней как можно больше, подняли свои приборы на ракетах за пределы атмосферы, и глазам этих приборов предстала новая, неведомая картина рентгеновского небосвода с совсем другими звездами и созвездиями. Картина эта, конечно, вырисовывалась постепенно, в результате кропотливой работы физиков и инженеров по созданию и совершенствованию специальных рентгеновских телескопов. Ведь обычные стеклянные линзы непригодны для получения рентгеновских изображений, и запечатлеть эти изображения с помощью обычной фотографии тоже нельзя Поэтому физикам пришлось изобрести специальные приборы — детекторы, которые позволили составить подробную рентгеновскую карту неба. Самые яркие источники на этой карте именуют так. Берут название (обычного, видимого) созвездия, из которого светит источник, рядом пишут номер по степени (рентгеновской) яркости и все ту же букву икс, например — Лебедь Х-1. Буква икс напоминает о загадке, вставшей когда-то перед Рентгеном, но может восприниматься и как символ тайн, не раскрытых еще в мире звезд.
Главная загадка связана с конечными судьбами звезд, и без рентгеновских лучей разгадать ее вряд ли удастся.
Что ожидает звезду, когда израсходуется весь запас ее энергии? Астрофизики-теоретики, вооруженные своими формулами, могут сказать об этом довольно многое. Впрочем, и без формул понятно, что вещество холодеющей звезды благодаря всемирному тяготению должно сжиматься. Но до какого предела? Теоретики уверяют, что если масса звезды не многим больше массы Солнца, то возникает небесное тело, плотность вещества в котором фантастически велика, — сдвинуть наперсток с таким веществом под силу лишь миллиону мощных тягачей! Как ни удивительно, астрофизики-наблюдатели, или попросту астрономы, эту фантастику подтверждают.
А что если масса остывающей звезды во много раз превышает массу Солнца? Тогда, как гласит теория, звезда сжимается неограниченно. Образуется так называемся черная дыра, которая своим чудовищно сильным притяжением не выпускает даже свет со своей поверхности. Однако такой объект по-настоящему черен лишь в совершенно пустом пространстве. Если же рядом с черной дырой окажется какое-нибудь вещество, например обычная звезда, то это вещество с такой силой устремится к черной дыре, что — подобно трубке Рентгена с быстрыми электронами — возникнет рентгеновское излучение. Так что искать черные дыры надо с помощью рентгеновских телескопов. Что астрономы и делают. В результате таких поисков они заподозрили в «чернодырности» упоминавшийся источник Х-1 в созвездии Лебедя. Однако превратить это подозрение в достоверный факт до сих пор никак не удастся. Все еще нет уверенности, что источник икс-лучей — это действительно та самая, предсказанная теоретиками черная дыра.
Так что икс-лучи, загадку которых физики давно раскрыли, привели к новым загадкам, ждущим своего решения.
ИЗОБРЕТАТЕЛИ РАДИОТЕЛЕГРАФА
КТО И КОГДА?
Кто и когда изобрел радио?
Одни на этот вопрос отвечают: изобрел его Александр Степанович Попов, и было это сорок лет назад[26]. Другие говорят: радио изобрел итальянец Гульельмо Маркони.
И в самом деле: сорок лет назад и Попов, и Маркони одновременно построили первые в мире радиостанции и начали посылать первые в мире радиотелеграммы.
Но история радио началась значительно раньше, чем была послана первая радиотелеграмма. Ученые, которые своими открытиями и опытами начали историю радио, не посылали и не принимали никаких радиотелеграмм. Они и не стремились к тому, чтобы передавать на расстояние какие-либо сигналы или музыку, или звуки человеческой речи. Как удивились бы эти первые изобретатели радиотелеграфа, если бы им сказал кто-нибудь, что они изобретают радиотелеграф!
Передача звуков, сигналов, изображений их нисколько не занимала. Их интересовало другое.
Видели ли вы когда-нибудь электрические искры, которые вылетают из наэлектризованных предметов? Блестящие электрические искорки, вспыхивающие на одно мгновение и сейчас же угасающие снова? Вот с этих-то искорок и началась история радио.
Много десятилетий физики наблюдали электрическую искру, делали с ней опыты, изучали ее свойства. Наконец они захотели узнать: какой срок проходит от рождения искры до ее смерти? Сколько времени живет электрическая искра?
Вопрос был трудный. Обыкновенно на него отвечали так: она вспыхивает и сейчас же угасает, она живет всего только одно мгновение. Но что такое мгновение? Сотая доля секунды или тысячная доля, или миллионная? Как узнать это, как измерить?
Течение времени ощущает всякий человек. Все мы отличаем минуту от двух минут, секунду от двух секунд и даже десятую часть секунды от целой секунды. Но все, что меньше одной десятой, одной пятнадцатой доли секунды, — все это для нас уже неразличимо, все это — и сотая, и тысячная, и миллионная доля секунды — кажется нам совершенно одинаковым. Органы чувств у нас не такие уж быстрые, точные, изощренные.
Во всяком промежутке времени, который меньше одной пятнадцатой части секунды, мы не улавливаем никакой длительности. Поэтому-то в нашем ощущении сотая доля секунды сливается с тысячной, тысячная с миллионной. Миг — и все тут.
Ну а часы? Ведь они для того и сделаны, чтобы измерять время. Не могут ли часы измерить длительность одного мгновения?
Зайдем на фабрику, изготовляющую точные приборы. Мы увидим там и стенные часы, и башенные, и карманные. Мы найдем там и хронометры, которые берут с собой моряки, отправляясь в далекое плавание-, и сверхточные часы для астрономических наблюдений, и электрические хронографы, и секундомеры. Но часов, измеряющих миллионные доли секунды, на фабрике мы не найдем.
И все же такие часы существуют. Семьдесят пять лет тому назад их изобрел и построил немецкий физик Вильгельм Феддерсен. Он изобрел их специально для того, чтобы измерить, сколько времени живет электрическая искра.
Он и не подозревал, что, создавая эти часы, он начинает историю радио.
ЧАСЫ ФЕДДЕРСЕНА
Часы, построенные Феддерсеном, дожили до нашего времени. Они хранятся в музее в немецком городе Мюнхене.
На обыкновенные наши часы они ничуть не похожи. Ни часовой, ни минутной, ни даже секундной стрелки у них нет. О каких стрелках может идти речь, когда нужно мерить миллионные доли секунды? Где найти стрелку, которая успевала бы сделать в секунду миллион заметных глазу шажков? А шажки эти должны быть заметны — ведь к этому и сводилась задача Феддерсена.
И вот Феддерсен после долгих раздумий сообразил, какая стрелка нужна его часам. Он смастерил ее не из бронзы, не из стали, а из материала, которого до него не употреблял ни один часовщик.