Солнечные элементы — страница 12 из 36

p-n-перехода (у современных серийных солнечных элементов в интервале 0,3–0,6 мкм). При этом, чтобы обеспечить поглощение всех падающих фотонов солнечного излучения с энергией hvEg толщина базовой области должна быть не менее 200 мкм. Сопротивление базовой области невелико — ток протекает поперек слоя достаточно большого сечения к вплавляемому в кремний в инертной атмосфере при температуре 750–800o C сплошному или сетчатому базовому контакту, первый слой которого (для уменьшения переходного сопротивления металл — кремний р-типа) часто делается из алюминия, являющегося примесью р-типа. Алюминий наносится испарением в высоком вакууме или в виде алюминийсодержащих паст с органическим связующим. Слой алюминия перекрывается затем пленками титана, палладия, серебра или никеля и слоем припоя из олова и свинца.

Высокое слоевое сопротивление верхнего легированного слоя кремния n-типа, составляющее, как правило, от 50 до 100 Ом/□, преодолевается созданием на внешней поверхности частой металлизированной сетки токосъемных контактов из тех же материалов, что и тыльный контакт (за исключением слоя алюминия, необходимость в котором при контакте к n-слою отпадает[4]). Конфигурацию верхней контактной сетки можно рассчитать по выведенным для этой цели формулам.

При изготовлении верхнего токосъемного контакта возникает сложная проблема: необходимо обеспечить достаточно хороший омический (невыпрямляющий) контакт, который при нанесении и последующей обработке не пробивал бы очень тонкий легирующий слой.

Эксперимент показывает, что создание металлического слоя целиком на всей внешней поверхности с последующим образованием контактного рисунка травлением приводит к появлению микрозакорачивающих участков, уменьшению Rш и росту I0 как в случае монокристаллических, так и тонкопленочных солнечных элементов. Этого можно избежать, если наносить контактные полосы через металлические маски или (что очень похоже по идее) через окна в слое полимерного фоторезиста или просветляющего покрытия, а также непосредственно через просветляющее покрытие. В любом случае происходит соприкосновение металла с легированным слоем только в местах будущего контакта.

При слоевом сопротивлении от 50 до 100 Ом/□ на внешней поверхности солнечного элемента площадью 2×2 см достаточно создать один контакт в виде полоски шириной 0,5–1,0 мм по любой стороне элемента и от шести до двенадцати отходящих от него контактных токосъемных полос шириной 0,05 — 0,1 мм, чтобы понизить составляющую легирующего слоя в общем последовательном сопротивлении элемента Rп до значений в диапазоне 0,15 — 0,2 Ом.

Однако при очень мелкозалегающих р-n-переходах (l=0,15—0,4 мкм), подобных тем, диффузионные профили (распределение концентрации примеси по глубине) которых показаны на рис. 2.11, слоевое сопротивление возрастает до 500 Ом/□ и количество контактных полос на элементе площадью 2×2 см уже увеличивается до 60 (необходимое низкое сопротивление контактной полосы шириной 15–20 мкм достигается при этом путем последующего электрохимического доращивания слоя серебра до толщины 3–5 мкм). Если контактный рисунок на поверхности кремниевых солнечных элементов планарной конструкции создан в соответствии с расчетом и точной технологией, то вольт-амперные характеристики резко улучшаются (форма приближается к прямоугольной), а КПД элементов η под внеатмосферным солнцем составляет от 12 до 13,5 % (рис. 2.12).



Рис. 2.11. Распределение концентрации свободных носителей по глубине в верхних сильнолегированных слоях современных кремниевых солнечных элементов при различной глубине залегания р-n-перехода

1–3 — 0,12; 0,28 и 0,4 мкм соответственно


Рис. 2.12. Световые вольт-амперные характеристики двух современных кремниевых солнечных элементов размером 2×2 см, измеренные под имитатором внеатмосферного Солнца (плотность потока излучения 1360 Вт/м2), и кривые равного КПД от 8 до 14 %


В последнее время предложен ряд новых материалов для создания контактов к легированным слоям малой толщины, например из нитридов титана, которые в сочетании с кремнием обладают ничтожно малым переходным сопротивлением.

Оптимальный полупроводниковый материал для создания солнечного элемента

Солнечным элементом с p-n-переходом в гомогенном полупроводнике называют элемент из однородного полупроводникового материала, основные оптические и электрические свойства которого (в частности, ширина запрещенной зоны) одинаковы по всему объему.

Структуры и солнечные элементы на их основе называются варизонными, если ширина запрещенной зоны изменяется, например, убывает от поверхности в глубь кристалла за счет плавного изменения химического состава материала, и на некоторой глубине расположен p-n-переход. При этом он может находиться на границе двух слоев из полупроводников с разной шириной запрещенной зоны (называемой гетеропереходом) или в одном из них, как правило, в нижнем слое из полупроводника с меньшей шириной запрещенной зоны. В этом случае верхний слой широкозонного материала выполняет лишь роль оптического окна, пропускающего свет к p-n-переходу. В то же время граница узкозонного и широкозонного материалов, если близки постоянные их решеток, как в случае систем GaAlAs — GaAs и Cu2S — CdZnS, обладает низкой скоростью рекомбинации носителей заряда.

Поскольку в солнечных элементах с p-n-переходом в гетероструктурах рекомбинация на верхней границе оказывается резко уменьшенной, то эффективность собирания носителей (особенно в коротковолновой области спектра) растет и КПД таких элементов достигает весьма высоких значений.

На ранних стадиях изучения гомогенных солнечных элементов считалось, что для их изготовления желательно применять полупроводник, у которого ширина запрещенной зоны равнялась бы энергии фотонов, соответствующей максимуму солнечного спектра, т. е. примерно 2 эВ. В дальнейшем стало ясно, что для создания солнечных элементов следует выбирать полупроводник с меньшей шириной запрещенной зоны, что приводит к увеличению числа фотоактивных квантов солнечного спектра и росту Iκ 3 элементов, однако генерируемая ими фото-ЭДС при этом снижается из-за уменьшения высоты потенциального барьера р-n-перехода.



Рис. 2.13. Зависимости максимального КПД солнечного элемента во внеатмосферных условиях от ширины запрещенной зоны использованного полупроводникового материала

1 — коэффициент А (см. п. 2.3) равен 1; 2 — А = 2


Рис. 2.14. Зависимости максимальной удельной мощности солнечного элемента от ширины запрещенной зоны полупроводникового материала для внеатмосферного (1) и наземного (2, 3) условий применения

1 — атмосферная масса т = 0, толщина слоя осажденных паров воды в атмосфере ω = 0; 2 — m — 1, ω = 2 см (с селективными полосами поглощения); з — m = 3, ω = 0


Наличие двух противоположных тенденций во влиянии исходного материала на свойства солнечных элементов показывает, что только в результате анализа всей вольт-амперной характеристики солнечного элемента и влияния на нее спектра падающего излучения может быть получена строго обоснованная зависимость возможного КПД от ширины запрещенной зоны полупроводника.

Такой расчет выполнен впервые Дж. Лоферским в 1956 г. с использованием спектров наземного солнечного излучения, измеренных Ч. Абботом. Оптические и фотоэлектрические потери оценивались значениями, весьма близкими к оптимальным для солнечных элементов из разных полупроводниковых материалов. Последующий расчет максимального КПД привел к нескольким полезным наглядным зависимостям, некоторые из которых представлены на рис. 2.13 и 2.14.

Анализ полученных результатов расчета позволил наметить пути разработки солнечных элементов из многих других полупроводниковых материалов, а не только из кремния. Наиболее подходящими для получения максимального КПД, заметно превышающего КПД кремниевых солнечных элементов, являются полупроводники с Eg в интервале 1,1–1,6 эВ (см. рис. 2.13, 2.14).

Для наземного солнечного излучения уменьшается (по сравнению с внеатмосферными условиями) оптимальное значение ширины запрещенной зоны полупроводника, позволяющего получить наибольшее значение КПД. Важным для достижения максимального КПД фотоэлектрического преобразования энергии является механизм протекания обратного тока через p-n-переход, определяющий коэффициент А и значение I0 (см. с. 55). Совершенствование этих параметров p-n-перехода солнечных элементов может привести к более существенному росту эффективности (см. рис. 2.13), чем расширение спектральной области фотоактивного поглощения солнечного излучения полупроводниковым материалом.

В солнечном элементе с p-n-переходом в гомогенном полупроводниковом материале p-n-переход собирает и разделяет созданные светом по обе его стороны (как в n-, так и в p-области) избыточные неосновные носители. То же самое происходит и в большинстве других, более сложных моделей солнечных элементов, за исключением, вероятно, лишь тех случаев, когда носители заряда разделяются на контакте металл — полупроводник (барьер Шоттки) и только одна из областей является фотоактивной или полностью поглощающей все солнечное излучение (это в значительной степени реализуется в тонкопленочных солнечных элементах на основе гетероструктуры сульфид меди — сульфид кадмия, где в силу высокого поглощения света в сульфиде меди в нем поглощается практически все солнечное излучение, хотя толщина слоя сульфида меди обычно невелика — от 0,05 до 0,2 мкм).

Выше было показано, что в основной полосе поглощения полупроводника, определяющей область спектральной чувствительности солнечных элементов, изготовленных из этого материала, квантовый выход фотоионизации