Сон под микроскопом. Что происходит с нами и мозгом во время сна — страница 64 из 66

192. Daan, S., Beersma, D. G., and Borbely, A. A. (1984). Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246, R161–183.

193. Borbely, A. A., Baumann, F., Brandeis, D., Strauch, I., and Lehmann, D. (1981). Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51, 483–495.

194. Thomas, C. W., Guillaumin, M. C., McKillop, L. E., Achermann, P., and Vyazovskiy, V. V. (2020). Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. Elife 9.

195. Vyazovskiy, V. V., and Harris, K. D. (2013). Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 14, 443–451.

196. Hung, C. S., Sarasso, S., Ferrarelli, F., Riedner, B., Ghilardi, M. F., Cirelli, C., and Tononi, G. (2013). Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36, 59–72.

197. Nir, Y., Andrillon, T., Marmelshtein, A., Suthana, N., Cirelli, C., Tononi, G., and Fried, I. (2017). Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nat Med 23, 1474–1480.

198. Vyazovskiy, V. V., Olcese, U., Hanlon, E. C., Nir, Y., Cirelli, C., and Tononi, G. (2011). Local sleep in awake rats. Nature 472, 443–447.

199. Ekirch, A. R. (2005). At day’s close: night in times past, 1st Edition (New York: Norton).

200. Oleksenko, A. I., Mukhametov, L. M., Polyakova, I. G., Supin, A. Y., and Kovalzon, V. M. (1992). Unihemispheric sleep deprivation in bottlenose dolphins. J Sleep Res 1, 40–44.

201. Lyamin, O. I., Kosenko, P. O., Lapierre, J. L., Mukhametov, L. M., and Siegel, J. M. (2008). Fur seals display a strong drive for bilateral slow-wave sleep while on land. J Neurosci 28, 12614–12621.

202. Vyazovskiy, V. V., Ruijgrok, G., Deboer, T., and Tobler, I. (2006). Running wheel accessibility affects the regional electroencephalogram during sleep in mice. Cereb Cortex 16, 328–336.

203. Fisher, S. P., Cui, N., McKillop, L. E., Gemignani, J., Bannerman, D. M., Oliver, P. L., Peirson, S. N., and Vyazovskiy, V. V. (2016). Stereotypic wheel running decreases cortical activity in mice. Nat Commun 7, 13138.

204. Milinski, L., Fisher, S. P., Cui, N., McKillop, L. E., Blanco-Duque, C., Ang, G., Yamagata, T., Bannerman, D. M., and Vyazovskiy, V. V. (2021). Waking experience modulates sleep need in mice. BMC Biol 19, 65.

205. Rattenborg, N. C., Mandt, B. H., Obermeyer, W. H., Winsauer, P. J., Huber, R., Wikelski, M., and Benca, R. M. (2004). Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biol 2, E212.

206. Kleitman, N. (1982). Basic rest-activity cycle-22 years later. Sleep 5, 311–317.

Глава IX. Экология сна

207. Bateson, G. (1972). Steps to an ecology of mind; collected essays in anthropology, psychiatry, evolution, and epistemology (San Francisco, Chandler Pub. Co.).

208. Maturana, H. R., and Varela, F. J. (1980). Autopoiesis and cognition: the realization of the living (Dordrecht, Holland; Boston: D. Reidel Pub. Co.).

209. Gould, S. J., and Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205, 581–598.

210. Anafi, R. C., Kayser, M. S., and Raizen, D. M. (2019). Exploring phylogeny to find the function of sleep. Nat Rev Neurosci 20, 109–116.

211. Aulsebrook, A. E., Jones, T. M., Rattenborg, N. C., Roth, T. C., 2nd, and Lesku, J. A. (2016). Sleep Ecophysiology: Integrating Neuroscience and Ecology. Trends Ecol Evol 31, 590–599.

212. Daan, S., Spoelstra, K., Albrecht, U., Schmutz, I., Daan, M., Daan, B., Rienks, F., Poletaeva, I., Dell’Omo, G., Vyssotski, A., et al. (2011). Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J Biol Rhythms 26, 118–129.

213. van der Vinne, V., Tachinardi, P., Riede, S. J., Akkerman, J., Scheepe, J., Daan, S., and Hut, R. A. (2019). Maximising survival by shifting the daily timing of activity. Ecol Lett 22, 2097–2102.

214. Muindi, F., Zeitzer, J. M., Colas, D., and Heller, H. C. (2013). The acute effects of light on murine sleep during the dark phase: importance of melanopsin for maintenance of light-induced sleep. Eur J Neurosci 37, 1727–1736.

215. Foster, R. G. (2018). There is no mystery to sleep. Psych J 7, 206–208.

Глава X. Эволюция сна

216. Franken, P. (2013). A role for clock genes in sleep homeostasis. Curr Opin Neurobiol 23, 864–872.

217. Toda, H., Shi, M., Williams, J. A., and Sehgal, A. (2018). Genetic Mechanisms Underlying Sleep. Cold Spring Harb Symp Quant Biol 83, 57–61.

218. Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., and Pack, A. I. (2000). Rest in Drosophila is a sleep-like state. Neuron 25, 129–138.

219. Shaw, P. J., Cirelli, C., Greenspan, R. J., and Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837.

220. Allada, R., and Siegel, J. M. (2008). Unearthing the phylogenetic roots of sleep. Curr Biol 18, R670–R679.

221. Ungurean, G., van der Meij, J., Rattenborg, N. C., and Lesku, J. A. (2020). Evolution and plasticity of sleep. Current Opinion in Physiology 15, 111–119.

222. Reinhardt, K. D., Vyazovskiy, V. V., Hernandez-Aguilar, R. A., Imron, M. A., and Nekaris, K. A. (2019). Environment shapes sleep patterns in a wild nocturnal primate. Sci Rep 9, 9939.

223. Voelkl, B., Altman, N. S., Forsman, A., Forstmeier, W., Gurevitch, J., Jaric, I., Karp, N. A., Kas, M. J., Schielzeth, H., Van de Casteele, T., et al. (2020). Reproducibility of animal research in light of biological variation. Nat Rev Neurosci 21, 384–393.

224. Richter, S. H., Garner, J. P., and Wurbel, H. (2009). Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6, 257–261.

142. Tobler, I., and Neuner-Jehle, M. (1992). 24-h variation of vigilance in the cockroach Blaberus giganteus. J Sleep Res 1, 231–239.

225. Tobler, I., and Stalder, J. (1988). Rest in the scorpion – a sleeplike state? Journal of Comparative Physiology A 163, 227–235.

226. Kempf, A., Song, S. M., Talbot, C. B., and Miesenbock, G. (2019). A potassium channel beta-subunit couples mitochondrial electron transport to sleep. Nature 568, 230–234.

227. Huber, R., Hill, S. L., Holladay, C., Biesiadecki, M., Tononi, G., and Cirelli, C. (2004). Sleep homeostasis in Drosophila melanogaster. Sleep 27, 628–639.

228. Raizen, D. M., Zimmerman, J. E., Maycock, M. H., Ta, U. D., You, Y. J., Sundaram, M. V., and Pack, A. I. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451, 569–572.

Глава XI. Почему мы спим?

230. Cirelli, C., and Tononi, G. (2008). Is sleep essential? PLoS Biol 6, e216.

231. Eelderink-Chen, Z., Bosman, J., Sartor, F., Dodd, A. N., Kovacs, A. T., and Merrow, M. (2021). A circadian clock in a nonphotosynthetic prokaryote. Sci Adv 7.

232. Mayr, E. (1961). Cause and effect in biology. Science 134, 1501–1506.

233. Siegel, J. M. (2008). Do all animals sleep? Trends Neurosci 31, 208–213.

234. Frank, M. G., and Heller, H. C. (2019). The Function(s) of Sleep. Handb Exp Pharmacol 253, 3–34.

235. Krueger, J. M., Frank, M. G., Wisor, J. P., and Roy, S. (2016). Sleep function: Toward elucidating an enigma. Sleep Medicine Reviews 28, 42–50.

236. Daan, S., Barnes, B. M., and Strijkstra, A. M. (1991). Warming up for sleep? Ground squirrels sleep during arousals from hibernation. Neurosci Lett 128, 265–268.

237. Berger, R. J., and Phillips, N. H. (1995). Energy conservation and sleep. Behav Brain Res 69, 65–73.

238. Schmidt, M. H. (2014). The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 47, 122–153.

239. Deboer, T., and Tobler, I. (1994). Sleep EEG after daily torpor in the Djungarian hamster: similarity to the effect of sleep deprivation. Neurosci Lett 166, 35–38.

240. Huang, Y. G., Flaherty, S. J., Pothecary, C. A., Foster, R. G., Peirson, S. N., and Vyazovskiy, V. V. (2021). The relationship between fasting-induced torpor, sleep and waking in laboratory mice. Sleep.

241. Attwell, D., and Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21, 1133–1145.

Глава XII. От нейронов до экосистем

242. Neske, G. T. (2016). The Slow Oscillation in Cortical and Thalamic Networks: Mechanisms and Functions. Front Neural Circuits 9, 88.

243. Molle, M., and Born, J. (2011). Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res 193, 93–110.

244. Rasch, B., and Born, J. (2013). About Sleep’s Role in Memory. Physiol Rev 93, 681–766.

245. Buzsáki, G. (2006). Rhythms of the brain (Oxford; New York: Oxford University Press).

246. Corner, M. A. (2008). Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: A review of activity-dependent studies in live ‘model’ systems for the development of intrinsically generated bioelectric slow-wave sleep patterns. Brain Research Reviews 59, 221–244.

247. Murphy, M., Riedner, B. A., Huber, R., Massimini, M., Ferrarelli, F., and Tononi, G. (2009). Source modeling sleep slow waves. Proc Natl Acad Sci USA 106, 1608–1613.

248. Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A. C., and Jones, B. E. (1997). Regional cerebral blood fl ow changes as a function of delta and spindle activity during slow wave sleep in humans. J Neurosci 17, 4800–4808.