Генетическая устойчивость архей сказалась и на их возможности структурной организации колоний клеток, которые встречаются большей частью в форме протяженных нитей. Эдакий прототип многоклеточных, возникших вначале как колонии отдельных клеток, затем преобразовавшихся в ходе эволюции в функционально связанные многоклеточные растительные организмы. В отличие от одноклеточной, структурно-организованная многоклеточная форма более устойчива к воздействиям внешней среды, лучше защищена от воздействия среды, в том числе и за счет возможности функционального разделения усилий по поддержанию гомеостаза жизненной среды колонии клеток. Так, например, в случае с сине-зелеными водорослями в ее нитяной структуре периодически появляются клетки, которые участвуют только в фиксации азота и лишены хлорофилла, так как процесс фиксации азота несовместим с наличием в клетке атомарного кислорода.
К простейшим многоклеточным относятся структурно связанные колонии типа гидр. Это сифонофоры, медузы, морские огурцы, кораллы и т.д. Здесь уже более сложные функциональные связи между клетками, чем в случае с сине-зелеными водорослями, что предполагает функциональную дифференциацию клеток в таких колониях.
Функциональная дифференциация клеток – безусловная необходимость пространственно организованной их колонии, существующей как единый биологический организм. Хотя бы в силу того, что различные группы клеток, находясь в различных структурных частях этого организма, подвержены отличающимся воздействиям среды. Есть еще одно фундаментальное преимущество многоклеточных организмов. Существование в рамках единого организма максимально благоприятствует информационному взаимодействию клеток на уровне белкового обмена. Такое взаимодействие позволяет колонии клеток организовать коллективное противодействие неблагоприятным факторам, в отличие, скажем, от структурно не связанной колонии бактерий. Но есть и неблагоприятный фактор такой организации. Гибель большой части функциональных клеток колонии может привести к гибели и всего биоорганизма. На уровне растительных форм жизни этот неблагоприятный фактор минимизируется тем, что структура целого организма может восстановиться даже из небольшой сохранившейся ее части.
Многоклеточная форма существования предъявила повышенные требования к генетическому аппарату клетки. Теперь генетическая информация должна была содержать не только последовательность кодов, определяющих структуру клетки, но и всю информацию о последовательности всех морфологических изменений, которые приводили к данной структуре организма, в том числе и тех, которые данную клетку напрямую не затрагивали. Вдобавок информационная сохранность кодов, записанных в молекулах ДНК, оказалась чрезвычайно важной для физического выживания данного вида организма, так как даже небольшие изменения в генной информации приводили к его мутации, крайне редко позволявшей данному организму конкурировать за среду обитания. Эта необходимость защиты генетической информации породила новый тип клеток, в которых появилось защищенное оболочкой ядро, содержащее весь генетический материал клетки. Более того, молекулы ДНК структурно упаковывались, что снижало возможность случайного химического воздействия на них. В отличие от безъядерных клеток, называемых прокариотами, такие клетки выделяются в отдельный класс и называются эукариотами.
Но защищенность генетического материала клетки имела и отрицательную сторону – пониженную приспособляемость вида к меняющимся условиям внешней среды. Как противодействие этому фактору появился и в дальнейшем закрепился бинарный половой механизм обмена генной информацией на вертикальном уровне. Помимо бинарного, в природе случайным образом появляются и реализации обмена информацией на большем числе параллельных генетических структур. Но такой обмен для сложных организмов является избыточным по вариабельности и, как правило, порождает маложизнеспособные формы. Только на низшем уровне многоклеточных форм полиплоидность имеет место быть. И пока не ясно, дает ли такая полиплоидность преимущества в видовой приспособляемости организмов к внешней среде.
«На рубеже раннего и среднего рифея (около 1,35 млрд лет назад) господство прокариот сменяется расцветом эукариот – зеленых и золотистых водорослей. Из одноклеточных эукариот за короткое (в геологическом смысле) время развиваются многоклеточные со сложной организацией и специализацией». [24]
«В составе рифея выделяются 4 подразделения: нижний (1650-1400 млн лет), средний (1400-1100), верхний (1100-680) и венд (680-570).
Каждое из этих 4 подразделений содержит характерный комплекс построек сине-зеленых водорослей – строматолитов, которые являются основой для расчленения и корреляции отложений рифея, а также другие органические остатки. Морские и континентальные отложения рифея широко распространены на всех материках». [24]
Физическая разобщенность растительных организмов, привязанных к определенному месту существования, делала процесс переноса генетической информации между отдельными экземплярами организмов весьма затруднительным и зависимым от внешних условий. Поэтому такой процесс эволюционно отрабатывался, скорее всего, по гермафродитному типу, на межклеточном уровне или же между обособленными частями этого растения. Важным при этом являлось то, что новая клетка, обновившая таким путем набор генетических признаков, не получала никаких преимуществ, развиваясь в теле родительского организма. Только структурно отделившаяся от родительского организма и перенесенная воздействием внешней среды на новое место, она могла произвести колонию клеток со свойствами, несколько отличными от родительского организма. Но вероятность такого отличия была не больше, чем вероятность удачной мутации части клеток растительного организма. Скорее даже наоборот. Размножение почкованием (делением организма на части) только накапливает генетические ошибки. А вот половое размножение позволяет восстановить исходный генетический код. Это позволяет предположить, что первоначально половое размножение возникло и совершенствовалось как форма защиты генетической информации, но, выйдя за рамки гермафродитной формы, превратилось в свою противоположность – средство эволюционного изменения вида. В обоснование довода о защитной функции гермафродитного размножения говорит и тот факт, что оплодотворенные клетки приобретали затем сильно защищенную форму от воздействия внешней среды – превращались в споры.
Если рассматривать животный мир именно как систему, утилизирующую биоорганику, то его возникновение следует отнести к периоду господства бактериальных одноклеточных форм жизни. Действительно, трудно предположить, что клеточный лизис не привел бы к возникновению одноклеточных, специализирующихся на целенаправленном поглощении конкурирующих видов бактерий и одноклеточных. Так возник мир амеб, инфузорий и т.п. Общим для всех них явилось возникновение белков и белковых структур, обеспечивающих их перемещение в пространстве. Без такого свойства существование одноклеточных хищников становится маловероятным, ввиду отсутствия других источников пополнения энергии и биологического материала. Пространственное перемещение клеток достигалось либо изменением геометрии тела клетки за счет перестройки внутренних тяжей, либо пространственной перестройкой белков, образующих жгутик, под действием вырабатываемых клеткой ферментов. И еще одна необходимая особенность проявилась у таких клеток – образование развитой системы рецепторов на их поверхности, минимизирующей хаотичность пространственного движения и, следовательно, нерациональный расход энергии.
Развитая рецепторная система таких клеток проявилась тем, что для них важным и особенным стал обмен информацией между клетками посредством выделения специфических белков в ответ на раздражение рецепторной системы или изменение внутреннего химического гомеостаза. А в целом для всех организмов животного мира обеспечило такое фундаментальное свойство, как реакцию на тактильное воздействие внешней среды.
Пространственная ограниченность среды размножения и ограниченность биоресурсов рано или поздно приводит к конкурентной борьбе за источники существования. Наиболее действенный способ – структурная организация популяции клеток в функционально связанную систему. Простейшие формы такой организации уже упоминались как сифонофоры. Более сложные – потребовали, как и в случае с растительными формами, функциональной дифференциации клеток в рамках единого организма. На этих принципах возникли такие организмы, как дафнии, затем и простейшие ракообразные, давшие начало целому домену животных – ракообразных.
Но считать, что на этой основе возник весь животный мир, было бы неправильным. Весь остальной животный мир, скорее всего, возник из колониальных форм бактерий, участвующих в переработке органики. И эта общность происхождения объединяет животный мир с миром грибов. Где-то на раннем этапе произошло эволюционное разделение этих колоний. На многоклеточные формы, которые распространялись путем деления, и формы, которые освоение ареала обитания осуществляли путем механического перемещения данной колонии. Это различие кардинальным образом повлияло на морфологию организмов и на все их последующее развитие.
Можно полагать, что многоклеточные формы животных, возникшие как консолидированные колонии бактерий, изначально разделились на домен моллюсков и домен червей. Причем уровень приспособленности червей к функциям переработки отходов органики растительного происхождения был выше, чем моллюсков. Можно так же предположить, что моллюски- более поздняя стадия возникновения многоклеточных по отношению к червям. Это косвенно подтверждает и различие в питании этих животных. Если черви первоначально специализировались на переваривании отходов органики растительного происхождения, то моллюски формировались уже как всеядные.
И еще. Среди моллюсков не так уж редки случаи заражения червями, которые избрали тело моллюска в качестве среды существования. А это в какой-то мере пре