Сотворение Земли. Как живые организмы создали наш мир — страница 35 из 68

В конце силурийского периода (427–419 млн лет назад) на суше появились несомненные растения: риниофиты (Rhyniophyta; от шотландского местечка Райни и греч. φυτόν — растение), зостерофиллофиты (Zosterophyllophyta; от греч. ζωστήρ — пояс и φύλλον — лист), тримерофиты (Trimerophyta; от греч. τρί-μέρος — трехчастный), плауны (они единственные дожили до наших дней; рис. 24.1) и несколько других менее многочисленных групп. Пока у этих низкорослых первопоселенцев не было ни корней, ни настоящих листьев. Был лишь тонкий, правильно ветвящийся побег (ось) с округлыми спорангиями. Собственно, и фотосинтезирующие клетки находились в побеге. Нижняя часть побега (ризомы) тоже многократно ветвилась и стелилась вдоль поверхности почвы или даже в водной среде. От ризомов отходили нитевидные одноклеточные (или однорядные многоклеточные) выросты — ризоиды, которые служили для закрепления на субстрате и поглощения воды и питательных элементов. Настоящей сосудистой ткани еще не было: только удлиненные веретеновидные проводящие клетки — трахеиды, расположенные вдоль оси побега и подводящие воду ко всем органам. (Есть подобие таких образований — гидроидные клетки — и у мхов с печеночниками.) Различались древние растения по расположению, форме и строению спорангиев — органов, где развивались споры, причем спорофит и гаметофит у них, видимо, были соразмерными, хотя и не похожими друг на друга. У зостерофиллофитов на побеге возникли эмергенцы — мелкие игловидные выросты, а у тримерофитов и плаунов — микрофиллы (буквально — «мелкие листочки»), куда из побега вел тонкий сосудик, жилка. Основанием микрофиллы плотно прилегали к побегу. Так растения начали увеличивать площадь фотосинтезирующих органов. Появилось у них еще одно важное приобретение — устьица. Сквозь эту систему замыкающих клеток, расположенных на побегах, микрофиллах и спорангиях, углекислый газ и кислород проникали внутрь, под чехол, а вода испарялась. Устьица и водопроводящие клетки позволяли растениям окончательно освоиться на суше, поскольку испарение стало той силой, которое втягивало воду из почвы, где сидели ризомы, и тащило до самых замыкающих клеток.

Растения распространились по огромному континенту — Лавруссии, образовавшемуся после закрытия океана Япет и коллизии Лаврентии и Балтии. Лавруссия находилась в Северном полушарии, и на ее шельфе как раз накапливался древний красный песчаник. Южный континент Гондвану в конце силурийского периода облюбовали плауны, а самый северный материк — Ангарида (прежняя Сибирь и «пристыковавшиеся» к ней монгольские и казахстанские микроконтиненты) — из-за своего приполярного положения, видимо, еще не зазеленел. Обитали древние наземные растения в сырых, насыщенных влагой низинах и почти отмирали в засуху. В сухие сезоны современный плаун сворачивается, словно еж, припрятав внутри клубка зерна хлорофилла. Так он был способен «проспать» лет 15. Возможно, подобным образом выживали и растительные первопроходцы суши. Их побеги еще не стали надежной опорой, и растеньица поддерживали друг дружку, собираясь в плотные пучки, полупогруженные в воду.

В основном все силурийские и раннедевонские растения не превышали в высоту 0,1 м, лишь немногие дорастали до 2 м. В середине девонского периода «стартовала гонка за солнцем»: чтобы опередить соседей, не остаться в тени и не зачахнуть, растениям пришлось тянуться вверх. Но, чтобы подняться выше, нужно было обеспечить себе опору и овладеть гидравликой — наукой, изучающей законы движения и равновесия жидкостей. Согласно ее правилам, для водопровода лучше всего подходят цилиндрические трубы. Если у первых наземных растений роль проводящих сосудов играли отдельные веретеновидные трахеиды (1–4 мм длиной) с усиленными, но эластичными стенками, то к концу девонского периода у некоторых деревьев проводящие пучки уже состояли из трахеид на порядок длиннее (30–40 мм) и несколько шире. Еще сильнее увеличился диаметр трахеид у каменноугольных древовидных плаунов и семенных папоротников. А чем больше радиус трубы, тем выше ее проводимость и скорость текущего в ней потока: увеличение диаметра всего в два раза повышает проводимость трубки в 16 раз. Проводимость всей ткани зависит от числа отдельных трубок-сосудов. Однако труба большого диаметра должна выдерживать сильное давление, поэтому для укрепления ее стенок требуется пропитка, в качестве которой растения стали использовать лигнин (лат. lignum — древесина). Этот нерегулярный полимер формируется у наземных растений на основе довольно распространенного продукта обмена веществ — фенилпропанового радикала (С36). В составе спорополленина тот же компонент защищает ткани от ультрафиолетового излучения наиболее опасного коротковолнового спектра. Оказалось, что это вещество пригодно и для укрепления (одеревенения) клеточных оболочек. Благодаря одеревенению и получилась водопроводящая ткань — ксилема. Попутно лигнин превратился в мощное препятствие для патогенных грибов и растительноядных животных, а также в накопитель углерода — 30 % всей современной растительной биомассы приходится на это вещество. Без укрепленных трубок-капилляров поднять самотеком воду на 10-метровую высоту растениям не удалось бы. Чтобы такая махина не падала от малейшего дуновения ветра, необходимо было «заякориться» в почве — пустить корни. Возраст древнейших ископаемых корней — 411 млн лет, известны они у раннедевонских плаунов. Лигнин появился позднее: раннедевонские растения, судя по их изотопной подписи углерода и вещественному анализу оболочек проводящих клеток, этот полимер для укрепления тканей еще не использовали.




В течение последующих 50 млн лет своего существования наземные растения за счет всех усовершенствований увеличились в обхвате в 30 с лишним раз (до 3 м и более) и вытянулись по меньшей мере в 8 раз (до 8 м, возможно, и до 30 м). Так и возникли деревья. Растения древовидного облика — с глубокой корневой системой и широкими листьями — стали распространяться около 380 млн лет назад (рис. 26.1а — в). Настоящие листья, или макрофиллы, получились из пластинок, разросшихся между частыми ответвлениями побега. На дальнейшем увеличении площади листа сказалось снижение уровня углекислого газа: чтобы захватить достаточный объем ставших дефицитными молекул, понадобилось не только повысить плотность устьиц, но и расширить листовую пластину, чтобы их уместилось побольше.

Начиная со второго, пражского, века девонского периода (411–408 млн лет назад) растительный покров стремительно распространялся на все большее пространство: место низкорослых околоводных низинных «лугов» из голых риниофитов, зостерофиллофитов и тримерофитов сначала заняли травянистые и кустистые плауны и первые папоротники. Они все еще придерживались обводненных низин, но настоящие леса из древовидных плаунов, папоротников и некоторых других деревьев начали осваивать сухие возвышенности. (Все эти растения вели начало от тримерофитов, кроме плаунов, скорее всего произошедших от зостерофиллофитов.) Если в раннедевонскую эпоху растительность покрывала не более десятой части суши, то к концу периода уже занимала свыше двух третей ее площади. Распространение растительного покрова придало суше более темный цвет, что понизило альбедо планеты и смягчило климат в наступающую каменноугольную ледниковую эру.

В лесах, сложившихся к концу девонского периода (около 360 млн лет назад), существенную роль стали играть несколько новых групп, в первую очередь прогимноспермы (Progymnospermophyta), такие как археоптерис (Archaeopteris). Из-за сходства в строении перистых листьев — вай, расположенных правильной восходящей спиралью, — и спорангиев, сидевших на листовой пластине, подобные ископаемые растения долгое время считались папоротниками. Однако строение ствола с вторичной древесиной (дополнительные упрочняющие наслоения ксилемы) и усиленной проводящей тканью, состоявшей из мелких, но прочных трахеид, сближает их с голосеменными (Gymnospermaе), предками которых они могли быть. Плотная вторичная древесина позволяла наращивать ствол до 1,5 м в поперечнике и 25 м и более высотой, а пористые трахеиды помогали с максимальной пользой использовать капиллярные явления и поднимать воду на эту высоту; большая плотность этих клеток давала возможность прогимноспермам выживать в маловодных условиях, даже на солончаках. Еще они отличались от споровых современников развитой корневой системой — постоянно обновлявшейся, с обильной сетью тонких корневых волосков, способных проникнуть в любую пору, и уходившей на метровую глубину.

Надо отметить, что эффективную водопроводящую систему можно было организовать двумя основными способами. Во-первых, построить ее из относительно коротких, но обильных трахеид с многочисленными порами и сильно укрепленными (лигнифицированными) стенками. Такое сочетание высокой механической прочности и проводимости (благодаря многократному дублированию «каналов») позволяло выживать в маловодных условиях с сильными перепадами температур. Ксилема подобного типа появилась у прогимноспермов, что и позволило им распространиться на прежде неблагоприятные для растений территории, а также у кордаитов, глоссоптериевых (о них немного ниже) и хвойных (рис. 26.2). Поэтому хвойные по-прежнему прекрасно себя чувствуют в условиях «вечной мерзлоты», высокогорий и сухих средиземноморских ландшафтов.



Другой вариант ксилемы — большие проводящие клетки — обеспечивал более быстрый рост, но при условии постоянного бесперебойного подвода жидкости, что возможно только в безморозном климате, иначе закупорка трахеид или образование в них разреженностей приводили к гибели ткани. Функцию основной опоры при этом принимала на себя кора. Стволы с подобным строением известны у ряда голосеменных (тригонокарповые, цикадовые), семенных папоротников (таких, как лигиноптериевые — Lyginopteridales), а также в некоторой степени у древовидных плаунов, хвощей и папоротников (рис. 26.3). (Забегая вперед, нужно отметить, что наиболее совершенная проводящая ткань возникла у покрытосеменных: у них появились настоящие сосуды — открытые с обоих концов цилиндрические трубки, а опорную функцию стали выполнять специализированные сильно лигнифицированные непроводящие клетки; современная береза высотой 15 м, например, благодаря такому строению ствола «поднимает» по два десятка 10-литровых ведер воды на уровень шестого этажа ежедневно.)