Сотворение Земли. Как живые организмы создали наш мир — страница 59 из 68

В конце кембрийского периода (около 500 млн лет назад) высшие (сосудистые) растения начали освоение суши, и к концу силурийского — началу девонского периода (420–400 млн лет назад) сложились разнообразные наземные сообщества. Коренным событием этого времени стало появление «грибокорня» — микоризального симбиоза сосудистых растений и грибов, что позволило растениям получать важнейшие микроэлементы и воду практически в любых условиях. Результатом этого союза стало развитие мощных корней, способных поддерживать одеревеневшие стволы более 10 м высотой. Корневая система также укрепила речные берега и тем самым способствовала формированию долговременных русловых потоков, а появление леса и продвижение лесных сообществ в глубь континентов усилило увлажнение прежде засушливых областей (через систему водо- и газообмена у растений). Поскольку микоризальный симбиоз изымал элементы из минералов очень избирательно, обогащая почвы кремнием, за счет калия и других важных микроэлементов, во влажном тропическом и увлажненном умеренном климате начали развиваться бокситы (важнейшее алюминиевое сырье) и латериты (сейчас широко используемые для производства кирпича).

Одновременно усилившееся биохимическое выветривание суши привело к выносу больших объемов биогенных веществ в мелководные морские водоемы. «Цветение» водорослевого и бактериального планктона, «вскормленного» биогенными элементами, вызвало падение уровня кислорода в морях, заморы и вынужденный выход четвероногих позвоночных на сушу в конце девонского периода (370–360 млн лет назад).

Становление новых каменноугольных лесных сообществ, наоборот, привело к захоронению огромной массы неокисленной органики, превратившейся впоследствии в богатейшие месторождения каменного угля. 70 % промышленных угольных запасов планеты — это остатки каменноугольных лесов, а ныне месторождения угля, отчасти заброшенные, заинтересовали геологов и промышленников уже как источники угольного газа. Важным последствием масштабного углеобразования стало резкое падение содержания углекислого газа в атмосфере (до нынешнего уровня) и повышение — кислорода (до 30–35 %). Такой состав воздуха благоприятствовал появлению гигантских членистоногих и земноводных (350–300 млн лет назад). И пусть значительные изменения состава атмосферы вызвали новую ледниковую эру, Земля не превратилась вновь в снежный шарик, поскольку темный растительный покров снизил альбедо суши и смягчил климат.

В мезозойскую эру, как на суше, так и в море, с появлением хищников более 10 м длиной темпы эволюционно-экологических преобразований возросли на порядок. Сложились экосистемы с максимальным разнообразием видов — коралловые рифы в море и дождевой тропический лес на суше. А произошедшая в Мировом океане «цветная революция», когда различные планктонные одноклеточные обрели новые фотосинтезирующие органеллы с красными пигментами и вытеснили зеленый фитопланктон, привела к существенной перестройке циклов углерода, серы и ряда других элементов. Причем новые группы планктонных водорослей стали мощнейшим фактором климатических и даже тектонических изменений и косвенно повлияли на очередное повышение содержания кислорода в атмосфере. Кроме того, именно благодаря «красному» планктону сформировалось 70 % мировых нефтегазовых запасов.

Последний и пока еще не закончившийся этап преобразования планеты начался около 20 млн лет назад и связан с развитием на суше травянистого биома — степи, включая саванны, прерии, пампасы. Благодаря освоению новых путей фотосинтеза травы превратили степь в наиболее продуктивный наземный биом с самыми плодородными почвами, которые стали важнейшим долговременным накопителем углерода. Усиление давления травоядных животных на степную растительность привело к формированию у трав защитных кремневых телец — фитолитов, что вызвало новую волну роста разнообразия травоядных копытных и усиление потока биогенного кремнезема в Мировой океан. Как итог в океане произошла очередная смена основных групп планктонных водорослей: вперед вырвались потребители кремнезема, что снова привело к заметным климатическим изменениям. Плодородная и обильная степная экосистема сыграла важную роль в становлении человеческой цивилизации и распространении последнего вида человека по всем континентам, исключая скрывшийся под ледяным панцирем Антарктический архипелаг. Бессмысленные пути развития человеческой цивилизации при мощнейших возможностях этой цивилизации как новой геологической силы ведут к деградации всех биомов (в первую очередь степного) и исчерпанию невосполнимых ресурсов (полезных ископаемых), образовавшихся благодаря деятельности всех живых организмов планеты в течение 4 млрд лет, что, несомненно, закончится коллапсом.

Избранная библиография

Часть I

Амосов Р. А., Васин С. Л. Золотые микрофоссилии // Руды и металлы. 1993. № 36. С. 101–7.

Герман Т. Н. Органический мир миллиард лет назад. — Л.: Наука, 1990.

Герман Т. Н., Подковыров В. Н. Находки рифейских гетеротрофов в лахандинской серии Сибири // Палеонтологический журнал. 2010. № 4. С. 5–23.

Заварзин Г. А. Лекции по природоведческой микробиологии. — М.: Наука, 2003.

Заварзин Г. А. Эволюция прокариотной биосферы: Микробы в круговороте жизни. 120 лет спустя: Чтение им. С. Н. Виноградского. — М.: МАКС Пресс, 2011.

Козо-Полянский Б. М. Новый принцип биологии: очерк теории симбиогенеза. — Л.-М.: Пучина, 1924.

Мережковский К. С. Теория двух плазм как основа симбиогенезиса, нового учения о происхождении организмов. — Казань: типография Императорского ун-та, 1908.

Петров П. Ю. Микробные маты как источник карбонатных осадков в позднем докембрии; свита линок, средний рифей Туруханского поднятия Сибири // Литология и полезные ископаемые. 2001. № 2. С. 191–215.

Семихатов М. А., Раабен М. Е. Динамика глобального разнообразия строматолитов протерозоя. Ст. 2: Африка, Австралия, Северная Америка и общий синтез // Стратиграфия. Геологическая корреляция. 1996. № 1. С. 26–54.

Семихатов М. А., Серебряков С. Н. Сибирский гипостратотип рифея. — М.: Наука, 1983. (Тр. ГИН АН СССР. Вып. 367.)

Тимофеев Б. В. Древнепалеозойские отложения в Молдавии // Доклады АН СССР. 1952. Т. 36. № 6. С. 1207–9.

Фаминцын А. С. О роли симбиоза в эволюции организмов // Записки Императорской академии наук по физико-математическому отделению. Сер. VIII. Т. ХХ. 1907. № 3. С. 1–14.

Школьник Э. Л., Жегалло Е. А., Герасименко Л. М., Шувалова Ю. В. Углеродистые породы и золото в них бассейна Витватерсранд, ЮАР, — исследование с помощью электронного микроскопа. — М.: Эслан, 2005.

Adams K. A. et al. 2012. Optical reflectivity of solid and liquid methane: Application to spectroscopy of Titan’s hydrocarbon lakes // Geophysical Research Letters, 39, L04309. DOI: 10.1029/2011GL049710

Agić H., Moczydłowska M., Yin L. 2015. Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China // Journal of Paleontology, 89, 28–50.

Aulbach S., Stagno V. 2016. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle // Geology, 44, 751–4.

Bachan A., Kump L. R. 2015. The rise of oxygen and siderite oxidation during the Lomagundi Event // Proceedings of the National Academy of Sciences of the USA, 112, 6562–7.

Bao H., Lyons J. R., Zhou C. 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation // Nature, 453, 504–6.

Barboni M. et al. 2017. Early formation of the Moon 4.51 billion years ago // Science Advances, DOI: 10.1126/sciadv.1602365

Bekker A. et al. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes // Economic Geology, 105, 467–508.

Bengtson S., ed. 1994. Early Life on Earth. New York: Columbia Univ. Press, 630 p. (Nobel Symposium, 84.)

Bengtson S. et al. 2017. Fungus-like mycelia fossils in 2.4-billion-year-old vesicular basalts // Nature Ecology & Evolution, 1, 0141. DOI: 10.1038/s41559-017-0141

Bernard S., Papineau D. 2014. Graphitic carbons and biosignatures // Elements, 10, 435–40.

Bosak T., Liang B., Sim M. S., Petroff A. P. 2009. Morphological record of oxygenic photosynthesis in conical stromatolites // Proceedings of the National Academy of Sciences of the USA, 106, 10939–43.

Bosak T., Macdonald F., Lahr D., Matys E. 2011. Putative Cryogenian ciliates from Mongolia // Geology, 39, 1123–6.

Bose P. K. et al. 2012. Sedimentation patterns during the Precambrian: A unique record? // Marine and Petroleum Geology, 33, 34–68.

Bouvier A., Wadhwa M. 2010. The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion // Nature Geoscience, 3, 637–41.

Brasier M. D., Antcliffe J., Saunders M., Wacey D. 2015. Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries // Proceedings of the National Academy of Sciences of the USA, 112, 4859–64.

Brocks J. J. et al. 2017. The rise of algae in Cryogenian oceans and the emergence of animals // Nature, 548, 578–81.

Brush S. G. 1989. The age of the Earth in the twentieth century // Earth Sciences History, 8 (2), 170–82.

Butterfield N. J. 2009. Modes of pre-Ediacaran multicellularity // Precambrian Research, 173, 201–11.

Butterfield N. J. 2015. Early evolution of the Eukaryota // Palaeontology, 58, 5–17.

Claire M. W. et al. 2014. Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere //