Сотворение Земли. Как живые организмы создали наш мир — страница 60 из 68

Geochimica & Cosmochimica Acta, 141, 365–80.

Cockell C. S., Kelly L. C., Marteinsson V. 2013. Actinobacteria — An ancient phylum active in volcanic rock weathering // Geomicrobiology Journal, 30, 706–20.

Cohen P. A., Macdonald F. A. 2015. The Proterozoic record of eukaryotes // Paleobiology, 41, 610–32.

Cohen P. A., Schopf J. W., Butterfield N. J., Kudryavtsev A. B., Macdonald F. A. 2011. Phosphate biomineralization in mid-Neoproterozoic protists // Geology, 39, 539–42.

Coughenour L. C., Archer A. W., Lacovara J. K. 2013. Calculating Earth-Moon system parameters from sub-yearly tidal deposit records: An example from the carboniferous tradewater formation // Sedimentary Geology, 295, 67–76.

Dalrymple G. B. 1994. The Age of the Earth. Stanford: Stanford Univ. Press, 474 p.

Darwin C. 1871. Darwin Correspondence Project. «Letter No. 7471». http://www.darwinproject.ac.uk/Letter/DCPLETT7471.xml

Darwin G. H. 1879. On the precession of a viscous spheroid and the remote history of the Earth // Philosophical Transactions of the Royal Society of London, 170, 447–530.

Dickin A. P. 2005. Radiogenic Isotope Geology, 2nd ed. Cambridge: Cambridge Univ. Press, 492 p.

Dodd M. S. et al. 2017. Evidence for early life in Earth’s oldest hydrothermal vent precipitates // Nature, 543, 60–4.

Embley T. M., Martin W. 2006. Eukaryotic evolution, changes and challenges // Nature, 440, 623–30.

Eriksson P. G., Catuneanu O., Sarkar S., Tirsgaard H. 2005. Patterns of sedimentation in the Precambrian // Sedimentary Geology, 176, 17–42.

Falcón L. I., Magallon S., Castillo A. 2012. Dating the cyanobacterial ancestor of the chloroplast // The ISME Journal, 4, 777–83.

Fedonkin M. A., Yochelson E L. 2002. Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue-grade colonial eukaryote // Smithsonian Contributions to Paleobiology, 94, 1–29.

Ferla M. P., Thrash J. C., Giovannoni S. J., Patrick W. M. 2013. New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability // PLoS ONE, 8 (12), e83383. DOI: 10.1371/journal.pone.0083383

Fischer W. W., Knoll A. H. 2009. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation // Geological Society of America Bulletin, 121, 222–35.

Fralich P., Carter J. E. 2011. Neoarchean deep marine temperature: Evidence from turbidite successions // Precambrian Research, 191, 78–84.

Gaidos E. J., Güdel M., Blake G. A. 2000. The faint young Sun paradox: An observational test of an alternative solar model // Geophysical Research Letters, 27, 501–3.

Gaucher E. A., Govindarajan S., Ganesh O. K. 2008. Palaeotemperature trend for Precambrian life inferred from resurrected proteins // Nature, 451, 704–7.

Geldsetzer H. H. J., James N. P., Tebbutt E., eds. 1989. Reefs, Canada and Adjacent Area // Memoir of the Canadian Society of Petroleum Geologists, 13, 775 p.

Geer G. de. 1912. A geochronology of the last 12,000 years // International Geological Congress, 11th, Stockholm, 1910, Report, 1, 241–53.

Gradstein F. M., Ogg J. G., Schmitz M. D., Ogg G. M., eds. 2012. The Geologic Time Scale 2012. V. 1. Amsterdam: Elsevier, 1144 p.

Grosch E. G., Hazen R. M. 2015. Microbes, mineral evolution, and the rise of microcontinents — Origin and coevolution of life with early Earth // Astrobiology, 15 (10). DOI: 10.1089/ast.2015.1302

Grotzinger J. P., Kasting J. F. 1993. New constraints on Precambrian ocean composition // The Journal of Geology, 101, 235–43.

Grotzinger J. P., Knoll A. H. 1999. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? // Annual Review of Earth and Planetary Sciences, 27, 313–58.

Gumsley A. P. et al. 2017. Timing and tempo of the Great Oxidation Event // Proceedings of the National Academy of Sciences of the USA, 114, 1811–6.

Habicht K. S., Gade M., Thamdrup B., Berg P., Canfield D. E. 2002. Calibration of sulphate levels in the Archean ocean // Science, 298, 2372–4.

Hallbauer D. K. 1978. Witwatersrand gold deposits. Their genesis in the light of morphological studies // Gold Bulletin, 11 (1), 18–23.

Halverson G. P. et al. 2005. Towards a Neoproterozoic composite carbon-isotope record // Geological Society of America Bulletin, 117, 1181–207.

Hao J., Sverjensky D. A., Hazen R. M. 2017. A model for late Archean chemical weathering and world average river water // Earth and Planetary Science Letters. DOI: 10.1016/j.epsl.2016.10.021.

Hazen R. M. et al. 2008. Mineral evolution // American Mineralogist, 93, 1693–1720.

Hazen R. M. et al. 2011. Needs and opportunities for mineral evolution research // American Mineralogist, 96, 953–63.

Heinrich C. A. 2015. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life // Nature Geoscience, 8, 206–9.

Hoffman P. F. et al. 2017. Snowball Earth climate dynamics and Cryogenian Geology-Geobiology // Science Advances, 3, e1600983. DOI: 10.1126/sciadv.1600983

Husnik F., McCutcheon J. P. 2016. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis // Proceedings of the National Academy of Sciences of the USA, 113, E5416–24.

Igisu M. et al. 2009. Micro-FTIR signature of bacterial lipids in Proterozoic microfossils // Precambrian Research, 173, 19–26.

Javaux E. J., Marshall C. P., Bekker A. 2010. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits // Nature, 463, 934–8.

Johnson J. E. et al. 2013. Manganese-oxidizing photosynthesis before the rise of cyanobacteria // Proceedings of the National Academy of Sciences of the USA, 110, 11238–43.

Jørgensen B. B., Cohen Y., Revsbech N. P. 1986. Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat // Applied and Environmental Microbiology, 51, 408–17.

Kah L. C., Riding R. 2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria // Geology, 35, 799–802.

Kasting J. F. 2005. Methane and climate during the Precambrian era // Precambrian Research, 137, 119–29.

Kaufman A. J., Xiao S. 2003. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils // Nature, 425. 279–82.

Kemp A. E. S., ed.1996. Palaeoclimatology and Palaeoceanography from Laminated Sediments. Bath: Geol. Soc. London. 258 p. (Geological Society of London, Special Publication, 116).

Kempe S., Kazmierczak J. 2002. Biogenesis and early life on Earth and Europa: Favored by an alkaline ocean? // Astrobiology, 2, 123–30.

Kirschvink J. L., Kopp R. E. 2008. Palaeoproterozoic ice houses and the evolution of oxygen-mediated enzymes: the case for a late origin of photosystem II // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 2755–65.

Koeksoy E., Halama M., Konhauser K. O., Kappler A. 2016. Using modern ferruginous habitats to interpret Precambrian banded iron formation deposition // International Journal of Astrobiology, 15, 205–17.

Knoll A. H., Javaux E. J., Hewitt D., Cohen P. 2006. Eukaryotic organisms in Proterozoic oceans // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 1023–38.

Knoll A. H., Canfield D. E., Konhauser K. O., eds. 2012. Fundamentals of Geobiology, 1st ed. Chichester: Wiley-Blackwell, 456 p.

Konhauser K. O., Kappler A., Roden E. E. 2011. Iron in microbial metabolism // Elements, 7, 89–93.

Kump L. R., Barley M. E. 2007. Increased subaerial volcanism and the rise of athmospheric oxygen 2.5 billion years ago // Nature, 448, 1033–6.

Lécuyer C. 2016. Seawater residence times of some elements of geochemical interest and the salinity of the oceans // Bulletin de la Société géologique de France, 187, 245–60.

Lepland A. et al. 2014. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis // Nature Geoscience, 7, 20–4.

Li Z.-X., Evans D. A. D., Halverson G. P. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland // Sedimentary Geology, 294, 219–32.

Li Z.-X., Evans D. A. D., Murphy J. B., eds. 2016. Supercontinent Cycles Through Earth History. Bath: Geol. Soc. London, 297 p. (Geological Society of London, Special Publication, 424).

Liu X.-M. et al. 2016. Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates // Geochemical Perspectives Letters, 2, 24–34.

Lyell C. 1851. On fossil rain-marks of the Recent, Triassic, and Carboniferous periods // Quarterly Journal of the Geological Society, 7, 238–47.

Lyons T. W., Reinhard C. T., Planavsky N. J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere // Nature, 506, 307–15.

Marin-Carbonne J., Robert F., Chaussidon M. 2014. The silicon and oxygen isotope composition of Precambrian cherts: A record of oceanic paleo-temperatures? //