Сотворение Земли. Как живые организмы создали наш мир — страница 63 из 68

Earth and Planetary Science Letters, 339–340, 79–94.

McKenzie J. A., Vasconcelos C. 2009. Dolomite Mountains and the origin of dolomite rock of which they mainly consist: historical developments and new perspective // Sedimentology, 56, 205–19.

Mentel M. et al. 2014. Of early animals, anaerobic mitochondria, and a modern sponge // Bioessays, 36, 924–32.

Mitchell E. G. et al. 2015. Reconstructing the reproductive mode of an Ediacaran macro-organism // Nature, 524, 343–6.

Notholt A. J. G., Jarvis I., eds. 1990. Phosphorite Research and Development. London: Geol. Soc., 326 p. (Geological Society of London, Special Publication, 52).

Poulton S. W., Fralick P. W., Canfield D. E. 2010. Spatial variability of oceanic redox structure 1.8 billion years ago // Nature Geoscience, 7, 3, 486–90.

Pratt B. 1998. Molar-tooth structure in Proterozoic carbonate rocks: Origin from synsedimentary earthquakes, and implications for the nature and evolution of basins and marine sediment // Geological Society of America Bulletin, 110, 1028–45.

Reinhard C. T. et al. 2017. Evolution of the global phosphorus cycle // Nature, 541, 386–9.

Roberson A. L., Roadt J., Halevy I., Kasting J. F. 2011. Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon // Geobiology, 9, 313–20.

Seilacher A. 1992. Vendobionta and Psammocorallia: Lost constructions of the Precambrian evolution // Journal of the Geological Society of London, 149, 607–13.

Shen B. et al. 2016. Molar tooth carbonates and benthic methane fluxes in Proterozoic ocean // Nature Communications, 7, 10317. DOI: 10.1038/ncomms10317.

Shields-Zhou G., Och L. 2011. The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences // GSA Today, 21, 4–11.

Singer A., Plotnick R., Laflamme M. 2013. Experimental fluid mechanics of an Ediacaran frond // Palaeontologia Electronica, 15, 2 (19A), 14 p. palaeo-electronica.org/content/2012-issue-2-articles/255-frond-biomechanics

Sperling E. A., Knoll A. H., Girgius P. R. 2015. The ecological physiology of Earth’s second oxygen revolution // Annual Review of Ecology, Evolution, and Systematics, 46, 215–35.

Sperling E. A. et al. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation // Nature, 523, 451–4.

Tostevin R. et al. 2016. Low-oxygen waters limited habitable space for early animals // Nature Communications, 7, 12818. DOI: 10.1038/ncomms12818

Vasconcelos C. et al. 2006. Lithifying microbial mats in Lagoa Vermelha, Brazil: modern Precambrian relics? // Sedimentary Geology, 185, 175–83.

Wallace M. W. et al. 2015. The Cryogenian Balcanoona reef complexes of the Northern Flinders Ranges: Implications for Neoproterozoic ocean chemistry // Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 320–36.

Wood R. A., Grotzinger J. P., Dickson J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia // Science, 296, 2383–6.

Wood R. A. et al. 2015. Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia // Precambrian Research, 261, 252–71.

Wood R., Ivantsov A. Yu., Zhuravlev A. Yu. 2017. First macrobiota biomineralisation was environmentally triggered // Proceedings of the Royal Society of London B, 284, 20170059. DOI: 10.1098/rspb.2017.0059.

Wood R. A., Zhuravlev A. Yu., Sukhov S. S., Zhu M. & Zhao F. 2017. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform // Geology, 45, 27–30.

Wright D. T. 1999. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia // Sedimentary Geology, 126, 147–57.

Xiao S., Knoll A. H., Yuan X., Pueschel C. M. 2004. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae // American Journal of Botany, 91, 214–27.

Xiao S. et al. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan // Proceedings of the National Academy of Sciences of the USA, 102, 10227–32.

Xiao S., Yuan X., Steiner M., Knoll A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China // Journal of Paleontology, 76, 347–76.

Yin Z. et al. 2013. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng’an Biota, South China // Precambrian Research, 225, 44–57.

Yin Z., Zhu M., Bottjer D. J., Zhao F., Tafforeau P. 2016. Meroblastic cleavage identifies some Ediacaran Doushantuo (China) embryo-like fossils as metazoans // Geology, 44, 735–8.

Yuan X., Chen Z., Xiao S., Zhou C., Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes // Nature, 470, 390–3.

Zhu M., Zhuravlev A. Yu., Wood R. A., Zhao F., Sukhov S. S. 2017. A deep root for the Cambrian Explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform // Geology. DOI: 10.1130/G38865.1.

Zhuravlev A. Yu. 1993. Were Ediacaran Vendobionta multicellulars? // Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 299–314.

Zhuravlev A. Yu., Wood R. A. 2008. Eve of biomineralization: Controls on skeletal mineralogy // Geology, 36, 923–6.

Zhuravlev A. Yu., Gámez Vintaned J. A., Ivantsov A. Yu. 2009. First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin // Geological Magazine, 146, 775–80.

Zhuravlev A. Yu., Wood R. A., Penny A. M. 2015. Ediacaran skeletal metazoan revealed to be complex lophophorate // Proceedings of the Royal Society of London B, 282, 20151860. DOI: 10.1098/rspb.2015.1860.

Часть III

Ефремoв И. A. Тафономия и геологическая летопись. — М.: Изд-во АН СССР, 1950. (Тр. ПИН АН СССР. Т. 24. Вып. 1).

Журавлев A. Ю. Ранняя история Metazoa — взгляд палеонтолога // Журнал общей биологии. 2014. Т. 75. № 6. С. 411–65.

Иванцов A. Ю., Журавлев A. Ю., Kрaсилoв В. A., Легутa A. В., Meльникoвa Л. M., Урбанек А., Ушaтинскaя Г. T., Малаховская Я. Е. Уникальные синские местонахождения раннекембрийских организмов. Сибирская платформа. — М.: Наука, 2005. (Тр. ПИН РАН. Т. 284).

Aldridge R. J., Briggs D. E. G. 1986. Conodonts // Hoffman A., Nitecki M. H., eds. Problematic Fossil Taxa. New York: Oxford Univ. Press; Oxford: Clarendon Press, p. 227–39. (Oxford Monographs on Geology and Geophysics, 5).

Aldridge R. J. et al. 2006. Bromalites from the Soom Shale Lagerstätte (Upper Ordovician) of South Africa: Palaeoecological and palaeobiological implications // Palaeontology, 49, 857–71.

Babcock L. E., Robison R. A. 1989. Preference of Palaeozoic predators // Nature, 337, 695–6.

Bailey J. V., Corsetti F. A., Bottjer D. J., Marenco K. N. 2006. Microbially-mediated environmental influences on metazoan colonization of matground ecosystems: Evidence from the Lower Cambrian Harkless Formation // Palaios, 21, 215–26.

Bambach R. K., Bush A. M., Erwin D. H. 2007. Autecology and the filling of ecospace: Key metazoan radiations // Palaeontology, 50, 1–22.

Barskov I. S., Boiko M. S., Konovalova V. A., Leonova T. B., Nikolaeva S. V. 2008. Cephalopods in the marine ecosystems of the Paleozoic // Paleontological Journal, 42 (11), 1167–1284.

Bottjer D. J., Hagadorn J. W., Dornbos S. Q. 2000. The Cambrian substrate revolution // GSA Today, 10, 1–7.

Butterfield N. J. 2011. Animals and the invention of the Phanerozoic Earth system // Trends in Ecology and Evolution, 26, 81–7.

Cong P. et al. 2014. Brain structure resolves the segmental affinity of anomalocaridid appendages // Nature, 513, 538–42.

Cooper R. A., Rigby S., Loydell D. K., Bates D. E. B. 2012. Palaeoecology of the Graptoloidea // Earth-Science Reviews, 112, 23–41.

Daley A. C., Edgecombe G. D. 2014. Morphology of Anomalocaris canadensis from the Burgess Shale // Journal of Paleontology, 88, 68–91.

Danovaro R. et al. 2010. The first metazoan living in permanently anoxic conditions // BMC Biology, 8, 30. DOI: 10.1186/1741-7007-8-30

Donoghue P. C. J., Keating J. N. 2014. Early vertebrate evolution // Palaeontology, 57, 879–93.

Dornbos S. Q., Bottjer D. J., Chen J. 2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution // Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 47–67.

Droser M. D., Finnegan S. 2003. The Ordovician Radiation: A follow-up to the Cambrian Explosion? // Integrative and Comparative Biology, 43, 178–84.

Duan Y. et al. 2014. Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the Lower Cambrian Chengjiang Lagerstätte, South China // Gondwana Research, 25, 983–90.

Dunne J. A., Williams R. J., Martinez N. D., Wood R. A., Erwin D. H. 2008. Compilation and network analyses of Cambrian food webs // PLoS Biology, 6 (4), e102. DOI: 10.1371/journal.pbio.0060102