В этом разделе рассмотрим особенности работы и подключения «умных» выключателей освещения. Не секрет, что даже насыщенные сервисными функциями выключатели не являются идеальными, поэтому всегда есть куда стремиться – в части приложения идей и воплощения в реальность «свежих» электротехнических решений.
3.5.1. Электронные «умные» выключатели освещения
Сегодня очень популярны выключатели света, конструктивно совмещенные с микроволновым сенсором; их устанавливают вместо обычных клавишных выключателей практически везде – от жилых комнат до подсобных помещений и внешнего уличного освещения. Датчики движения, установленные вне дома, позволяют не только выявлять движение на обширной зоне садово-паркового участка или помещения (причем контроль по вертикали исключает возможность «подкрадывания» злоумышленника под датчиком), но и включать свет и отключать его через некоторое, заданное владельцем, время. Тем самым обеспечивается энергосберегающий режим включения внешних светильников и защита от незамеченного появления нежданных гостей. Датчики движения могут управлять не только световыми приборами, но и электромеханическим приводом или системой сигнализации.
В приборах охраны также нередко можно встретить бесконтактные датчики, реагирующие на тепловое излучение; внешне они выглядят как коробочки с выпуклым матовым стеклом, обращенным к зоне охраны. «Матовое стекло» неоднородно, а разграничено на сектора с разным углом наклона и плотности относительно поверхности. Это линзы Френеля. Известный французский изобретатель знаменит тем, что в XIX веке воплотил в жизнь проект оборудования маяков специальными выпуклыми стеклами неоднородного состава. Свет, пропущенный через такие линзы, проникает сквозь туман через многие морские мили.
В зависимости от типа применяемой линзы можно получать территорию перекрытия (охраны) датчика вертикальную – типа «занавес», широкую по глубине, сфокусированную или размытую. Когда в зоне защиты появляется излучатель тепла – человек или животное, изменение теплового излучения в инфракрасном спектре улавливается датчиком, усиливается и управляет оконечным силовым каскадом.
Оконечное устройство – реле может управлять сиреной либо любой другой нагрузкой; таков автоматический выключатель освещения, который в активное состояние приводит появление человека в комнате.
Пироэлектрический детектор – основа прибора реагирует на изменение инфракрасного (далее – ИК) фона, поэтому недвижимый объект (даже излучающий тепло) не вызывает изменения состояния датчика. В связи с этим в схему введен узел задержки выключения для того, чтобы эффективно использовать прибор, как автоматический выключатель света в комнате. Чувствительность регулируется изменением угла наклона и приближения к линзе самого датчика и электронным способом – регулировкой усиления первого каскада схемы. В схемах охраны такие датчики получили названия «инфракрасных датчиков движения» или «датчиков движения». Инфракрасный датчик – это пироэлектрический детектор (рис. 3.49), состоящий из чувствительных керамических поверхностей, закрытых кварцевым окном, пропускающим только ИК-лучи.
Рис. 3.49. Вид на пироэлектрческие детекторы (ИК-детекторы)
Рис. 3.50. Пояснение принципа работы электронного устройства с датчиком в виде ИК-детектора
На рис. 3.50 показан принцип работы электронного устройства с датчиком в виде ИК-детектора.
В корпусе типа ТО-5 реализован полевой транзистор, усиливающий сигнал с чувствительной поверхности.
Как устроен датчик движения
В середине датчика расположены приемники ИК-света – фотоэлементы.
Линза Френеля состоит из множества маленьких линз, каждая из которых фокусирует ИК-свет на плоскость фотоэлемента, а одна из них – непосредственно на сам фотоэлемент (сигнал регистрируется).
При движении человека через какое-то время фокус линзы уходит с фотоэлемента и сигнал пропадает.
Затем уже другая линза фокусирует ИК-излучение от человека на фотоэлемент и сигнал опять появляется.
Такое появление-исчезновение-появление сигнала – признак присутствия человека.
Каждая линза охватывает свой сегмент. Сигнал пропадает при выходе человека (руки человека) за границы этого сегмента.
При перемещении внутри сегмента сигнал не меняется. Из вышесказанного можно сделать несколько логичных выводов.
1. Чем больше таких линз, тем более мелкие перемещения может улавливать датчик.
2. С удалением от датчика размер сегмента увеличивается и с какого-то расстояния все небольшие перемещения, например движение рук, покачивания головы, будут находиться в границах одного сегмента; после этого расстояния датчик присутствия может работать уже только как датчик движения.
3. У датчиков движения сегменты более крупные по сравнению с датчиками присутствия.
4. Датчики движения реагируют на более яркий ИК-свет по сравнению с датчикам присутствия.
Особенности выбора мест для установки датчиков движения
На датчик не должен падать прямой свет ламп; это поможет повысить его чувствительность. В зоне обнаружения датчика не должно быть посторонних объектов, ограничивающих обзор датчика, к примеру, подвесных светильников, не должно быть перегородок, даже стеклянных, поскольку ИК-свет сквозь стекло не проходит.
Основная характеристика датчика движения – радиус обнаружения. Для датчика присутствия – радиус обнаружения сидящего или стоящего человека и радиус обнаружения идущего человека.
Этот радиус должен «дотягивать» до углов помещения, т. е. один датчик контролирует зону (в зависимости от модели и предназначения) от 2 до 6 м. Как вариант, в комнате придется ставить 2–3 датчика.
Почти все современные датчики движения (присутствия) на сегодня – это датчики с круговыми или овальными диаграммами обнаружения. Поэтому охватить прямоугольное помещение датчиками с круговыми диаграммами можно только с перехлестом диаграмм.
Немецкая компания Theben AG делает датчики присутствия с квадратной зоной обнаружения, что значительно упрощает проектирование; в этом случае датчиков требуется меньше: 4 «квадратных» вместо 7 с круговой диаграммой. Углы помещения надежно перекрываются.
Электрическая схема стандартного датчика движения представлена на рис. 3.51.
Рис. 3.51. Электрическая схема промышленного датчика движения
Она состоит из популярного в настоящее время инфракрасного датчика BL1, двухкаскадного усилителя и схемы задержки выключения. Кроме того, на одном элементе DА1.3 собрано фотореле, реагирующее на общую освещенность площади перекрытия. Регулируемая задержка выключения необходима автомату для плавного выключения света после возможного резкого выхода человека из помещения. Фотореле также необходимо для того, чтобы свет включался только во время явно недостаточной освещенности комнаты, например, вечером, а не каждый раз, когда входит человек. Оба второстепенные устройства можно без последствий из схемы исключить или модернизировать, незначительно изменив схему с тем, чтобы, к примеру, скорректировать время задержки выключения в более широких пределах.
Если оставить только датчик движения, то элементы DA1.1, DA1.4, R18, R19, R20, фоторезистор R2, R6, R7, R8, R1, R3, R9, R12, R21, C8 из схемы нужно исключить; между выводами 1 и 3 DA1.3 включить компенсационную цепь обратной связи, аналогичную С5R14 в первом каскаде. Ограничительный резистор R22 в таком варианте подключают к точке соединения катодов диодов VD1 и VD2.
Датчик (в авторском варианте) без сбоев работает на кухне, в режиме «24 часа» уже более года, обеспечивая управление освещением. Самая дорогостоящая деталь схемы – сам датчик – пироэлектрический детектор, который пришлось взять из схем охраны, его тип RE46. Однако стоимость его стала невелика из-за массового производства датчиков движения несколько лет назад, а эффективность предлагаемой схемы превосходит на практике распространенные среди радиолюбителей устройства, типа емкостных, индуктивных датчиков и инфракрасных барьеров.
Схема работает следующим образом.
Быстрое изменение теплового поля в зоне активности датчика приводит к небольшим до 50 мВ скачкам напряжения на выходе детектора. Этот сигнал усиливается первым каскадом на полосовом усилителе DA1.2. Сигнал подается на неинвертирующий вход элемента ОУ DA1.2 с той же полярностью. В составе микросхемы DA1 КР1401УД2А имеется четыре независимых однотипных операционных усилителя, объединенных по питанию и реализованных на КМОП полевых транзисторах. Следующий усилительный каскад собран на втором ОУ. Конденсатор С1 ослабляет помехи, вызываемые искусственным освещением, когда свет уже зажжен. Если увеличить его емкость, усилится помехоподавление, но снизится чувствительность – медленные во времени перемещения останутся без реакции прибора, что недопустимо.
Чувствительность датчика можно незначительно изменить резистором R5, R4 и конденсатором С2. Делитель напряжения, выполненный на резисторах R10, R11, R15 и R17, задает смещение около 8 В на ОУ, примерно 2/3Uпит. На компараторе DA1.1 собрано фотореле, порог срабатывания которого регулируется подстроечным резистором R7.
Фоторезистор чувствительной поверхностью должен быть закреплен на раме и должен быть обращен к окну. При затемненности фоторезистора R2 (типа CФ3-1) на выходе ОУ DA1.1 присутствует положительный потенциал, корректирующий режим усиления второго каскада.
Конденсатор С4 не пропускает постоянную составляющую двух каскадов усиления, а конденсатор С3 стабилизирует напряжение смещения DA1.2. Коэффициент усиления первых двух ОУ регулируется резистором R16.
На элементе DA1.4 реализовано реле времени, запускаемое выпрямленным диодами VD1 и VD2 положительным сигналом, приходящим с выхода DA1.3.
Время задержки выключения зависит от номиналов элементов С8R18R19 и может достигать десятков минут. Чем больше время задержки, тем меньше точность временного интервала. Цепь R18R19 при нахождении оптимальной задержки, разумно заменить на один постоянный резистор. С выхода DA1.4 импульс включения поступает на транзисторный ключ, который управляет реле К1. Реле своими контактами на замыкание включает лампу освещения кухни. Слаботочное электромагнитное реле К1 – любое маломощное, на напряжение срабатывания 10–12 В и коммутируемый ток до 2 А, например, автомобильное реле на 12 В позиция 3747.06 в каталоге ВАЗ 2106.
Все постоянные резисторы типа МЛТ-0,125. Оксидные конденсаторы К50-12. Остальные конденсаторы типа КМ, Н70. Переменные резисторы – СП5-1ВБ.
Частая регулировка устройства не нужна, поэтому они «прячутся» на монтажной плате. Транзистор VT1 можно заменить на КТ815 с индексами (А – Г), КТ817 с индексами (А – Б), КТ940А – КТ940Б. Реле К1 можно заменить на РЭС 10, РЭС 15, РЭС 48А, а также на реле зарубежного производства, например фирмы Pasi, на рабочее напряжение 12 В и коммутируемый ток 3 А, типа BV2091-112DM.
Схема источника питания для датчика движения показана на рис. 3.52.
Полезный ток этого устройства составляет 100 мА.
Рис. 3.52. Электрическая схема источника питания
На рис. 3.53 представлен еще один вариант первого каскада электрической схемы датчика движения с использованием пироэлектрического датчика – детектора RE46 (и аналогичных), а также показана цоколевка выводов пироэлектрического детектора RE46.
Рис. 3.53. Электрическая схема усилителя сигналов к датчику движения и цоколевка выводов пироэлектрического датчика RE46
Эта схема с использованием операционного усилителя позволяет применять датчик, как составную часть более сложных конструкций, к примеру, охранных систем.
Элементы схемы крепятся на монтажной плате и закрываются пластмассовым корпусом. При монтаже необходимо быть осторожным. Паять пироэлектрические датчики нужно аккуратно, желательно с антистатическим заземленным браслетом, не перегревая выводов датчика – пайка каждого вывода должна быть не более 1 сек. Перегрев может вывести прибор из строя или ухудшить характеристику чувствительности.
Линза Френеля СЕ12 представлена на рис. 3.54.
Пироэлектрический датчик (на схеме рис. 3.51 он обозначен BL1) чувствительной стороной должен быть обращен к контролируемой зоне и расположен на расстоянии 1,7–2,5 см от поверхности линзы Френеля. Инфракрасный датчик марки Steinel с сегментированной линзой Френеля контролирует полукруг радиусом до 12 м, датчик с полусферической мультилинзой – площадь 450 м² в диапазоне 360°.
Рис. 3.54. Неоднородный материал линзы Френеля
Регулируются время включения, на протяжении которого еще будет гореть свет, когда «тепловой» объект покинет зону охвата датчика – от 10 сек до 15 мин, сумеречный порог, т. е. уровень освещенности, при котором будет включаться свет.
Номинальная мощность нагрузки 500, 600, 1000, 1200 Вт. Степень защиты IP54, работают при температуре от –20 °C до +50 °C.
Инфракрасные датчики фирмы DUWI (производства Германии) имеют аналогичное назначение и относятся к бизнес-классу по соотношению цена – качество.
Дальность действия встраиваемого 500-ваттного прибора (С8003) – 10 м, действия в горизонтальной плоскости 120°, задержка времени от 3 сек до 12 мин.
Мощность датчиков для внешнего монтажа 1000, 1200, 3000 Вт, радиус контроля 12 м. Угол охвата – 110, 180, 240°; определяется конструкцией.
Мощный датчик, который коммутирует нагрузку в сети 220 В мощностью до 3000 Вт, контролирует сектор 240° с дальностью 16 м. Задержка времени от 5 сек до 12 мин. Степень защиты от IP44 до IP66.
Сравнимы с ними по эксплуатационным характеристикам сенсоры фирмы Massive, Бельгия (С8011–С8012), KOPP, Германия (C8021–C8023, C8031–C8034), Globo, Австрия (С8016).
Датчики движения с радиоканалом производства Legrand работают с радиоинтерфейсом (С8042), который по радиоканалу принимает команду и транслирует ее в сеть электропитания. Зона управления электроприбора от 12 м и 90° до 16 м и 180°. Дальность передачи радиосигнала до 200 м.
Датчик движения С8047 фирмы АВВ коммутирует нагрузку мощностью до 3680 Вт, охватывает зону 16 м и 200° с контролем на уровне земли и с тыльной стороны ±30°; зона и порог чувствительности регулируются дистанционно с помощью ИК-пульта.
Датчик Presence Light360 коммутирует нагрузку 1200 Вт, имеет класс защиты IP54 от немецкой компании Theben (С8052), с необычным дизайном, встраивается в потолок и контролирует зону 8×8 м. Имеет автоматическую оптимизацию задержки освещения (от 10 сек до 20 мин), дистанционное управление и дистанционную настройку датчиков с помощью ИК-пульта. Внешний вид Presence Light360 представлен на рис. 3.55.
Электрическая схема подключения датчика движения (любой модели) представлена на рис. 3.56.
Рис. 3.55. Внешний вид датчика Presence Light360
Рис. 3.56. Электрическая схема подключения датчика движения (любой модели)
3.5.2. Современные датчики движения серии LX
Далее рассматривается несколько датчиков движения серии LX.
Датчик LX20-B
Электронный инфракрасный датчик движения LX20-B для потолочного монтажа предназначен для экономии электроэнергии. Автоматически включает осветительные приборы при появлении в зоне действия движущихся тепловых объектов (человек, крупное животное) и выключает нагрузку в однофазной осветительной сети 220 В через определенное время при отсутствии движения объектов в контролируемой зоне. Имеет встроенный датчик освещенности для определения смены дня и ночи.
Для создания прибора используется SMD-технология (Surface Mount Device – планарно монтируемый компонент, микросхема в корпусе (с планарными выводами) для монтажа на поверхность печатной платы) с высокочувствительным пироэлектрическим детектором и интегральной схемой. Устройство безопасно и легко в эксплуатации, быстро монтируется (устанавливается) в необходимом месте. Широкий угол обзора прибора создается за счет трех встроенных детекторов, которые мгновенно преобразуют инфракрасное излучение человека, вошедшего в область обнаружения устройства, в управляющий сигнал для включения рабочей нагрузки. Автоматически определяет наступление темного и светлого времени суток. Имеет индикацию наличия питания и реализации функции обнаружения объекта.
В табл. 3.1 представлены технические характеристики датчика движения LX20.
Таблица 3.1. Технические характеристики датчика движения LX20
Датчик движения инфракрасный Camelion
Датчики движения китайской компании Camelion представлены в магазинах широко и разнообразно.
Инфракрасные сенсоры эконом-класса, которые создавались как энергосберегающие выключатели, прежде всего освещения, хотя их функции практически более широкие. Эти компактные устройства содержат высокочувствительный широкополосный детектор, интегральную схему и радиоэлектронные элементы для поверхностного монтажа, а также индикацию работы источника сетевого питания. По конструкции датчики подразделяют на потолочные, настенные накладные, с шарниром и встраиваемые, а по степени защиты – IP44 и IP20.
Мощность нагрузки у разных моделей 100, 150, 200, 500, 600, 1200 Вт.
Дальность действия от 2 до 12 м; при рекомендуемой высоте установки от 0,5 до 4,5 м, угол обзора по горизонтали от 120 до 360°.
Задержка времени горения устанавливается от 5 сек и до 1– 12 мин.
Патрон с датчиком движения Camelion LX-451
Этот датчик представляет собой пластиковый патрон E27, снабженный сенсором освещенности и инфракрасным датчиком движения (рис. 3.57).
Рис. 3.57. Внешний вид электрического лампового патрона с встроенным датчиком движения Camelion LX-451
Датчик автоматически включает лампу в патроне при появлении в зоне его действия движущихся тепловых объектов (человек, крупное животное) и выключает лампу через определенное время, если отсутствует движение в контролируемой зоне. Очень удобен для гаражей, кладовок, подсобных помещений, холлов; прост в установке. В табл. 3.2 представлены технические характеристики электрического лампового патрона с встроенным датчиком движения Camelion LX-451.
Таблица 3.2. Технические характеристики электрического лампового патрона с встроенным датчиком движения Camelion LX-451
3.5.3. Класс защиты
Степень защиты обозначается буквами IP и затем двумя цифрами.
Первая цифра обозначает степень защиты от проникновения твердых механических предметов, вторая цифра показывает степень защиты от воздействия жидкости. Обозначения цифр для степеней защиты сведены в табл. 3.3.
Таблица 3.3. Цифровая кодировка степеней защиты
Последние два варианта лично я ни разу не встречал.
На практике наиболее часто встречаются электронные датчики и устройства на их основе, удовлетворяющие классу защиты IP54.
3.5.4. Практическое применение датчиков движения (маленькие хитрости)
Пироэлектрические датчики движения (далее ДД) в быту применяются лет десять и являются составной частью систем охраны, автоматики и предупреждения. Ни один «умный дом» сегодня не обойдется без этих недорогих и доступных датчиков.
Датчики свободно продаются в магазинах электротоваров. Среди множества ДД главным образом различают законченные автоматические узлы и локальные датчики.
Первые из них, предназначенные для бытовых нужд, снабжены собственным бестрансформаторным источником питания и узлом управления нагрузкой в сети 220 В, позволяющим коммутировать ток до 6 А.
Еще одна их особенность – наличие регулируемых фоточувствительных реле и таймера, отвечающего за задержку отключения нагрузки. Некоторые бытовые ДД имеют корпус, совмещенный с мощным фонарем освещения, внутри которого установлена галогеновая лампа (рассчитанная на напряжение 220 В). В быту и в личных целях применяют именно эти датчики.
Локальные ДД наиболее специфичны. Они предназначены для устройств охранных сигнализаций и безопасности, предупреждения и индикации присутствия. Изначально данные ДД рассчитаны для совместной работы в системах с централизованным питанием и резервными источниками бесперебойного питания (ИПБ) – в многофункциональных системах управления охранным комплексом, кодовым доступом, индикацией и дистанционным управлением. Эти ДД стоят (в отдельности) на два порядка дешевле бытовых «собратьев» и их можно приспособить для нужд радиолюбителя, воспользовавшись приведенными далее авторскими рекомендациями.
Итак, первое, с чем придется столкнуться, адаптируя «охранный» ДД в быту – это отдельный источник питания с постоянным выходным напряжением.
Внимание, важно! Подойдет любой стабилизированный источник питания с выходным напряжением 9—15 В. Если от источника питания к ДД необходим соединительный кабель более 2 м, рекомендую в месте подключения кабеля к датчику (в корпусе последнего) параллельно цепи питания установить оксидный конденсатор емкостью 1000—10000 мкФ с рабочим напряжением не менее 25 В – для сглаживаний пульсаций напряжения и, как следствие, для локализации помех по питанию.
Охранные датчики движения имеют одинаковый принцип действия и различаются некоторыми дополнительными функциями, например, индикацией срабатывания и регулировкой чувствительности. На рис. 3.58 представлен ДД ИО315-1 «Орлан» для цифрового кодированного охранного комплекса типа «Сигнал-201» и аналогичных.
Рис. 3.58. Внешний вид датчика ИО315-1 «Орлан»
Производитель датчика фирма «Риэлта». Датчик маркируется как «извещатель охранный».
Датчик снабжен трехуровневым светодиодным индикатором срабатывания и регулировкой чувствительности зоны сканирования. Если снять верхнюю крышку корпуса «Орлана», нашему взору откроется печатная плата с элементами (рис. 3.59).
Датчик имеет функцию самоохраны – для этого предусмотрена кнопка SA2, контакты которой замкнуты при нормально закрытой крышке корпуса. Переключатель SA1 отвечает за чувствительность датчика и комбинацию выходных сигналов при срабатывании шлейфа охраны. Подключение производится к клеммнику на плате датчика.
Рис. 3.59. Вид на печатную плату датчика ИО315-1 «Орлан»
Внимание, важно! Несмотря на то, что данный ДД (как и все рассматриваемые в настоящей книге) конструктивно предназначен для работы в составе многофункционального охранного комплекса, его можно использовать и отдельно (в составе соответствующей радиолюбительской конструкции).
Для этого питание подключают к клеммам " – " и "+" 12 В. Шлейф охраны подключают к контактам ШС2. При этом данный шлейф имеет нормально разомкнутое состояние (т. е. между контактами ШС2 имеется большое сопротивление) – если на датчик не подано питание и если (при подключенном питании) в зоне ответственности датчика происходят перемещения (движения). Если питание подключено и никаких движений в зоне датчика нет – состояние ШС2 – замкнутые контакты.
Светодиоды HL1—HL3 (желтый, красный, зеленый) зажигаются по мере срабатывания датчика на перемещение в зоне контроля. Наиболее чувствительная – «желтая» зона (затем «красная» и «зеленая»). Например, на практике желтый светодиод произвольно вспыхивает, когда к датчику кто-либо приближается. Красный загорается (или мигает, при близком приближении человека, зеленый – при активных движениях непосредственно перед датчиком).
Светодиоды могут гореть и одновременно (в частности это происходит при подключении ДД к питанию). Контакты шлейфа охраны ШС2 изменяют свое состояние при любой реакции ДД на перемещения (зажигания светодиода любого цвета свечения).
Благодаря светодиодам с ДД удобно проводить эксперименты, контролировать их работу и настраивать чувствительность.
Чувствительность данного ДД регулируется перестановкой перемычки на печатной плате (может быть высокая и нормальная чувствительность).
Перемычки на переключателе SA1 должны находиться в положении 1–4 —«вкл», 5 – «выкл».
Таким образом, для управления устройством сигнализации с помощью рассмотренного датчика нужно к нему подключить питание и провода к шлейфу ШС2. Ответную часть проводов ШС2 подключают на вход цифрового устройства, воспринимающего сигналы высокого или низкого логического уровня.
Например, между общим проводом и управляющим входом логической КМОП-микросхемы включают контакты ШС2. Между управляющим входом логической КМОП-микросхемы и «+» питания включают постоянный резистор сопротивлением 91 кОм (сопротивление указано примерно и может отличаться на 20 %). Таким образом, пока ДД не сработает, вход микросхемы будет шунтирован контактами ШС2 на общий провод. В случае нарушении зоны контроля ДД контакты ШС2 размыкаются, на управляющем входе оказывается сигнал высокого логического уровня, что приводит к включению сигнализации. При выключении питания датчика (в том числе злоумышленником) шлейф ШС2 снова будет разомкнут, что воспринимается устройством управления, как сигнал «тревога».
Шлейф ШС1 на плате данного датчика имеет постоянно замкнутые контакты (при указанных перемычках переключателя SA1), и в нашем случае интереса не представляет.
Другой охранный датчик ИО409-8 «Фотон-9» (производитель тот же) работает по аналогичному принципу. Внешний вид охранного датчика движения «Фотон-9» представлен на рис. 3.60.
Вид со снятой крышкой корпуса приведен на рис. 3.61.
Рис. 3.60. Внешний вид датчика «Фотон-9»
Рис. 3.61. Вид датчика «Фотон-9» со снятой крышкой
Отличие этого датчика от ранее рассмотренного состоит в том, что здесь в качестве индикатора срабатывания имеется только один светодиод (красного цвета свечения), на который возложены те же функции. Изменив положение перемычки на плате, можно повысить чувствительность датчика в разы.
Внимание, важно! Подключение данного ДД несколько отличается от предыдущего варианта. Напряжение питания подсоединяют к тем же контактам на клеммнике платы датчика, а вот охранное (либо исполнительное устройство) включают к шлейфу ШС1. Принцип работы датчика и срабатывание шлейфа на приближение человека в зоне контроля – те же.
Питание на данный ДД подается по аналогии с рассмотренными ранее вариантами, а шлейф охраны подключают к клеммам N и С. Отличительная особенность этого ДД в том, что элементы на схеме выполнены в SMD-исполнении, равно как и индикаторный светодиод (красного цвета свечения).
3.5.5. Особенности работы с датчиками движения
Не каждый знает об особенностях работы датчиков движения. В быту наиболее интересны две из таких особенностей:
• Датчик движения нежелательно фотографировать «в упор». Фотовспышка «ослепляет» пироэлектрический детектор датчика и впоследствии прибор может остаться «слеп» к перемещению людей в зоне своего действия, т. е. вести себя как неисправный. Эту особенность могут использовать злоумышленники, нейтрализующие датчики движения, находящиеся в составе охранных комплексов защиты от несанкционированного проникновения.
• Датчик движения реагирует на перемещение в своей зоне контроля предметов, излучающих тепло. Это могут быть люди и животные. При установке датчика движения на кухне (или в иных помещениях), где также установлена газовая плита, такой датчик может вести себя неадекватно, демонстрируя сбой в работе.
Природный газ излучает тепло (улавливаемое пироэлектрическим детектором датчика движения) и в то же время пламя газовой комфорки колеблется. Таким образом, датчик движения воспринимает горение природного газа, как постоянное перемещение предмета. Эта особенность «заставляет» датчик движения реагировать и (в зависимости от исполнительного устройства) включать устройства нагрузки, например освещение кухни. При использовании на кухне безгазовой электрической плиты ложный эффект срабатывания датчиков движения не наблюдается.
Внимание, важно! Как, не отключая датчик движения, «запретить» ему реагировать на изменение теплового поля в контролируемой зоне?
Для этого надо всего лишь прикрыть рабочую поверхность выключателя на основе пироэлектрического датчика движения каким-либо предметом. Этим предметом с успехом послужит любая (в том числе белого цвета) материя или, например, штора (портьера). Таким простым способом можно «вручную» нейтрализовать датчик движения. Этот способ напоминает нейтрализацию надоедливого попугая, которого может заставить замолчать накинутый на клетку платок (или иная ткань).
Применение данного способа оправдано не только на кухнях, но и в комнатах (и иных интерьерах, где может быть установлен выключатель освещения на основе датчика движения), например, в гостиной.
О ложных срабатываниях
Датчики движения редко дают сбои, связанные с ложными срабатываниями. Однако исключить их совсем нельзя. Чаще всего причиной ложных срабатываний ДД являются насекомые, в частности пауки, плетущие паутину под потолком помещения, в углах – местах расположения пироэлектрических детекторов.
Внимание, важно! Выхода из положения два: скомбинировать датчик движения с другим, например емкостным датчиком, или использовать для монтажа корпусов датчиков движения стойки из каштанового дерева (пауки избегают его), периодически распылять инсектициды вокруг корпусов пироэлектрических детекторов. Кроме того, нежелательно размещать ДД вблизи нагревательных приборов (камин, вентилятор, кондиционер и др.), так как они сами по себе являются источником излучения тепловых сигналов ИК-спектра) – об этом уже говорилось ранее.
Кроме того, близко к ДД нельзя располагать антенны передающих устройств диапазона частот 300–800 МГц и сами передатчики (радиостанции), поскольку при излучении радиочастоты от антенн и работе радиостанций в режиме «передача» датчики движения подвержены ложным срабатываниям.
Как исключить ложное срабатывание охранного устройства на основе ДД?
Практическое применение
Практическое применение данных рекомендаций в самодельных конструкциях охраны и контроля универсально и разнообразно. Теперь не надо затрачивать время и усилия на самостоятельный монтаж радиоэлементов охранного датчика движения, если в ваших запасах оказался один из них.
Внимание, важно! Учитывая особенность работы рассмотренных датчиков – разрыв шлейфа охраны при нарушении зоны контроля, для увеличения зоны контроля (в многокомнатных домах, больших помещениях, площадях) применяют несколько ДД, включая их шлейфы (ШС) охраны в последовательную цепь. Разрыв цепи хотя бы в одном месте приведет к срабатыванию сигнализации.
Одним из вариантов практического применения является подключение ДД к сигнализации с оповещением на сотовый телефон. В таком варианте рассмотренные ДД являются наиболее бюджетным (недорогим) решением без потери качества и функциональности охранной системы. Для примера: новый датчик Фотон-9 стоит в розницу чуть более 500 руб.
3.5.6. Датчики движения LX-19B и LX-2000
В продаже имеются инфракрасные датчики движения, по форме адаптированные к настенным выключателям света для скрытой проводки (рис. 3.62) LX-19B и LX-2000 (рис. 3.63) производства китайской фирмы Litarc Lighting & Electronic Ltd.
Рис. 3.62. Бытовой выключатель света – датчик движения LX-19B
Рис. 3.63. Бытовой выключатель света – датчик движения LX-2000
Краткие технические характеристики выключателя настенного LX-19B
• угол обзора 120°;
• дальность обнаружения 9 м;
• рабочая нагрузка 600 Вт;
• время задержки срабатывания 4—420 с;
• освещенность 10—2000 лк;
• высота установки от пола 1–1,6 м;
• питание ~220–240 В частотой 50–60 Гц;
• трехпроводное подключение рабочей нагрузки (схема включения представлена на рис. 3.64).
Рис. 3.64. Электрическая схема включения датчика движения LX-19B (SEN-1)
Датчик движения LX-19B (SEN-1) имеет огромную популярность и широко применяется, однако у него все же есть некоторые недостатки, которые можно исправить с помощью несложной доработки.
Кнопка включения (с фиксацией) на передней панели имеет два положения (нажата – «включено» или отжата – «выключено»). При выключенном состоянии устройство не потребляет ток и не реагирует на изменение теплового поля (выключено полностью). Во включенном состоянии датчик реагирует на движение при соответствующей освещенности объекта (в пределах 9 м), включая таймер задержки выключения света; оба параметра регулируются переменными резисторами в SMD-исполнении (для поверхностного монтажа – в миниатюрных корпусах), выведенными на панель под крышкой. При соответствующих установках с помощью этих регуляторов чувствительности устройства – при движении в зоне ответственности датчика свет включается и горит в течении 4– 420 сек (в соответствии с параметрами устройства).
Многие, как впрочем и автор этой книги, используют данный датчик в качестве сетевого выключателя света для бра (рядом с которым удобно почитать, прилечь, посмотреть телевизор). Выясняется, что при чтении пользоваться таким устройством практически неудобно; здесь обнаруживается один из недостатков устройства – время задержки выключения (максимальное значение чуть больше 5 минут) недостаточно.
Поскольку при чтении человек, как правило, не совершает резких движений, сидит (лежит) в зоне ответственности датчика движения неподвижно, то выключатель по истечении времени задержки встроенного таймера – отключатся. Поскольку кнопки «ручного управления» (принудительного включения света) устройство не имеет, приходится совершать принудительные движения рукой, отвлекаясь от книги.
Чтобы увеличить время задержки выключения потребуется вскрыть корпус устройства с тыльной стороны, открутив 2 крепежных самореза, и заменить оксидный времязадающий конденсатор (обозначенный С45) на печатной плате, установив новый емкостью 6800 мкФ на рабочее напряжение 16 В (вместо 220 мкФ на 16 В). Как это сделать – показано на рис. 3.65.
Рис. 3.65. Конденсатор С45 в датчике движения, подлежащий замене
Для замены подходит любой оксидный конденсатор с указанными ранее параметрами, к примеру фирмы ESP.
Найти этот конденсатор на печатной плате (в выключателе две печатных платы, расположенных одна под другой) не сложно. Кроме деталей в SMD-исполнении только 2 оксидных конденсатора «возвышаются» в монтаже; один из них – фильтр по питанию. После рекомендуемой замены максимальная выдержка времени составит не менее 22 мин, что вполне позволяет разрешить возникшую неприятность; за 22 минуты человек хотя бы раз обязательно сдвинется с места (совершит какое-то движение), что наверняка будет зафиксировано пироэлектрическим детектором – датчиком движения, и отсчет выдержки времени начнется заново. Читать или смотреть телетрансляцию станет намного комфортнее. Для дополнительных сведений в части понимания принципа работы описанного устройства, возможно, пригодится электрическая схема бытового датчика движения, описанная в [3]. На ней заменяемый конденсатор в узле встроенного таймера имеет обозначение С14.
Краткие технические характеристики датчика LX-2000
Датчик LX-2000, как более современная (относительно описанного выше) и многофункциональная типовая модель, имеет один встроенный датчик контроля движения (максимальная чувствительность – расстояние детектирования до 12 м, регулируется), датчик контроля освещенности и высокочувствительный (сила звука 30 дБ) датчик контроля звука, реализованный на электретном микрофоне.
Другие параметры тоже впечатляют:
• максимальный угол обзора (детектирования) 140º;
• диапазон рабочих температур от -20 ºС до +40 ºС;
• встроенный таймер (регулируемое время задержки выключения света) 5—540 сек;
• максимальная мощность подключаемой нагрузки до 500 Вт;
• потребляемая мощность (электроники датчика) 0,45 Вт;
• удобная регулировка на передней панели.
В дополнение ко всему LX-2000 подключается в электрическую цепь 220 В 50 Гц последовательно с лампой освещения, т. е. имеет только 2 контакта; это очень удобно. Электрическая схема включения представлена на рис. 3.66.
На рис. 3.67 показан внешний вид датчика LX-2000 со снятой передней панелью – для доступа к элементам настройки (регуляторам управления).
Рис. 3.66. Электрическая схема включения LX-2000
Рис. 3.67. Вид датчика LX-2000 со снятой передней панелью – для доступа к элементам настройки
Это многофункциональное устройство электронного датчика движения (сенсора) предназначено для экономного использования электроэнергии при освещении внутреннего пространства помещений (квартиры, офисы, комнаты, лестничные площадки). Датчик движения автоматически включит свет при появлении в зоне его действия движущихся тепловых объектов (человек, животное), а также автоматически выключит его через определенное время (в соответствии с настройкой) при отсутствии движения объектов в зоне контроля. В корпусе сенсора встроен датчик освещенности, который автоматически определяет смену дня и ночи (изменение освещенности помещения). Встроенный регулируемый высокочастотный датчик звука позволяет включать и выключать освещение. Электронный сенсор также может быть использован как датчик контроля движения в системах охранной сигнализации помещений.
Для максимальной эффективности использования такие датчики устанавливают от пола на расстоянии 0,5–1,8 м.
Для увеличения времени задержки выключения света можно (по аналогии) использовать методику, рекомендованную ранее – для датчика LX-19B – с заменой времязадающего конденсатора на печатной плате. Однако датчик LX-2000, совмещенный со звукочувствительным узлом, практически в этом не нуждается. Кроме того, на передней панели датчика LX-2000 (см. рис. 3.63) помещен «полозковый» переключатель выбора режимов, с помощью которого можно установить датчик в режим постоянного включения освещения «ON».
Розничная цена LX-2000 (450 руб.) всего на 60 руб. больше, чем у его более ранней разработки.
3.5.7. Снижение затрат на освещение
Датчики движения в быту устанавливают для снижения затрат на освещение, ведь светильники включаются только при обнаружении человека и тогда, когда недостаточно естественного света, к примеру, проникающего от окон. Затраты на электроэнергию после установки датчика движения (присутствия) снижаются на 40–50 %. Этот показатель состоит из двух составляющих:
• 22 % – снижение затрат на электроэнергию при включении/отключении освещения после обнаружения человека;
• 20 % – снижение затрат при включении/отключении освещения в зависимости от освещенности естественным светом.
По физической природе видимый свет и ИК-излучение одинаковы. Поэтому ИК-излучение можно сфокусировать линзой, как и обычный свет. При попадании ИК-излучения на фотоэлемент он меняет свои параметры. При комнатной температуре в видимом свете тела «не светятся», а в ИК-диапазоне – просто сияют (рис. 3.68).
Рис. 3.68. Изображение ИК-излучения человека (в полной темноте в комнате)
Внимание, важно! Яркость ИК-излучения зависит от температуры тела; что горячее – светится ярче, что холоднее, светится слабее. Контраст между ИК-свечением человека и ИК-свечением холодного окна – значительный. С другой стороны, ИК-свет от человека и ИК-свет от теплого пола (газовой или тепловой плиты, иных источников тепла) практически одинаковы, поэтому распознать человека на фоне теплого пола почти невозможно.
Появление и исчезновение ИК-света вызвано активной деятельностью человека, реже факторами, не связанными с человеком, к примеру, движением теплого воздуха от батареи.
И датчики движения, и датчики присутствия реагируют на появление/исчезновение ИК-света на пироэлектрическом элементе датчика, поэтому ошибочные срабатывания – это общее свойство датчиков движения (присутствия).
3.5.8. Настройка датчиков движения
Датчики настраиваются потенциометрами; обычно их три (рис. 3.69):
• для настройки чувствительности датчика (SENS), настраивается яркость ИК-света, на которую должен реагировать датчик;
• для установки времени задержки отключения освещения (TIME) – максимального интервала между появлениями сигнала на фотоэлементе. Если за это время сигнал не меняется, датчик отключит освещение, вентиляцию и т. п. – все, что подключено к датчику;
• (LUX) для настройки порогового значения по освещенности естественным светом (от окон, балкона). Если света от окон достаточно – при обнаружении человека светильники не включаются.
Рис. 3.69. Потенциометры для настройки датчиков движения
Настройка порогового значения освещенности
Дождитесь достаточной освещенности от окон, при которой датчик должен включать светильники. Медленно поворачивайте потенциометр «LUX», пока не включится свет.
Внимание, важно! При выборе датчика проверьте – где находятся потенциометры регудировки. Если на тыльной стороне, то обязательно убедитесь, что датчик легко снимается и легко устанавливается, иначе вас ждут большие трудности при настройке.
Настройка чувствительности датчика
Если датчик на вас не реагирует, то увеличивайте чувствительность, а если свет включается самопроизвольно – снижайте. Обычно чувствительность настраивается за 3–4 раза.
Из-за изменений окружающей температуры настройки могут сбиваться: если датчик настраивался летом, вполне возможно, что зимой придется его перенастраивать; и наоборот.
Это интересно! Летом датчик работал отлично, зимой начал самопроизвольно включать свет. Выяснили, что реагирует на теплый воздух, поднимающийся от батареи. Снизили чувствительность, стал работать нормально.
Настройка датчика присутствия требует точности в поворотах движка потенциометра, чтобы «нащупать» чувствительность, при которой датчик будет удовлетворительно работать. Это связано с тем, что работа датчиков движения зависит от внешней освещенности (рис. 3.70).
Наиболее стабильно работают датчики присутствия со встроенным микропроцессором. Когда в помещении никого нет, микропроцессор корректирует чувствительность, и датчик реагирует только на идущего человека.
При обнаружении человека чувствительность автоматически повышается, и датчик начинает улавливать движение рук, покачивание головы – все небольшие движения, которые совершает человек, когда сидит или лежит.
Рис. 3.70. Освещение влияет на чувствительность датчика
В ряде моделей датчиков (как правило, предназначенных для охранных систем) не предусмотрен регулирующий потенциометр для ручной настройки чувствительности; ее автоматически настраивает микропроцессор. Такие датчики работают без ошибок и избавляют от нудной настройки чувствительности вручную.
Настройка времени задержки отключения светильников
Таймерная задержка зависит от того как часто появляются в зоне обнаружения датчика люди (иные теплоизлучающие объекты, животные). Время задержки отключения освещения 1–2 минуты вполне нормальное, чтобы избежать постоянных включений/отключений освещения.
Внимание, важно! Для датчиков присутствия настройка сложнее. Оценить скорость размахивания руками и качаний головой бывает весьма затруднительно.
3.5.9. На что следует обратить внимание?
Изменение ИК-света вызывает движение, как человека, так и любых нагретых объектов (животные, поток теплого воздуха). У датчиков присутствия более высокая чувствительность по сравнению с датчиками движения, поэтому у них значительно больше ложных срабатываний.
Настройка чувствительности датчика из-за колебания температуры и условий среды может носить сезонный характер, для этого требуется терпение и время.
Для обнаружения идущего человека подойдут относительно недорогие модели, в то время как для обнаружения присутствия человека (движения рук, жестикуляция, покачивание головы и другие движения с малой динамикой, обычно совершаемые человеком, когда он стоит или сидит) лучше выбрать датчик с встроенным микропроцессором. Микропроцессор в зависимости от температуры настраивает чувствительность датчика (и запоминает состояние настроек), и в дальнейшем автоматически подстраивает ее в зависимости от интенсивности движений объекта (контролируемой зоны).
3.5.10. Монтаж и подключение клавишных выключателей освещения
В быту наиболее популярны клавишные выключатели освещения, предназначенные для скрытой проводки и встраиваемые в стену (рис. 3.71).
Рис. 3.71. Внешний вид установленного в стене клавишного выключателя освещения
Для монтажа в стену и подключения электрических проводов такой выключатель следует предварительно разобрать на составляющие и затем только устанавливать в стену.
Двухклавишный выключатель, если его разложить на составляющие части и рассмотреть подробно, представлен на рис. 3.72.
Рис. 3.72. Части двухклавишного выключателя
Внимание, важно! Перед началом работ по установке или демонтажу электрического выключателя освещения необходимо предпринять меры по обесточиванию участка электричекой цепи; это можно без труда сделать, отключив подачу напряжения на конкретный контур в электрическом шкафу (щитке) – в пределах вашей квартиры. Эти вопросы были рассмотрены в разд. 3.1 этой главы.
Промежуточный этап установки представлен на рис. 3.73.
Затем четырьмя саморезами, сообразно отверстиям – к стене крепится подложка выключателя (рис. 3.74).
После того как электропроводка подключена, корпус выключателя «утоплен» в штатную пластиковую коробку (в стену) и подложка выключателя надежно закреплена, ставят декоративную планку, закрывающую саморезы (рис. 3.75).
На рис. 3.76 представлен вид выключателя с одной установленной клавишей (установка клавиш – это следующий и завершающий этап работ по подключению и монтажу выключателей освещения для скрытой проводки).
Рис. 3.73. Выключатель с подсоединенными электрическими проводами перед установкой на штатное место – в стену
Рис. 3.74. Подложку и выключатель надо закрепить к стене
Рис. 3.75. Выключатель с установленной декоративной планкой
Рис. 3.76. Выключатель с одной установленной клавишей
Монтаж выключателей для открытой проводки в части безопасности и подключения проводников производят аналогичным образом. Корпус выключателя устанавливают непосредственно к основанию (стены, пола, подоконника или иной поверхности). Не исключена установка выключателей для открытой проводки на дин-рейку для выключателей-автоматов (рис. 3.77) в тех случаях, когда иначе их закрепить невозможно.
Рис. 3.77. Дин-рейка для крепления выключателей-автоматов