афине, в сочетании с природным ураном не поддерживает цепную реакцию.
После осознания этого обстоятельства у германского проекта остались два возможных замедляющих материала – графит и тяжелая вода. Одно ошибочное измерение, полученное в январе, уменьшило их число до единицы. Работавший в Гейдельберге Вальтер Боте, выдающийся экспериментатор, который впоследствии получил Нобелевскую премию совместно с Максом Борном, измерил сечение поглощения в углероде, использовав для этого метровый шар из высококачественного графита, погруженный в резервуар с водой. Он получил сечение, равное 6,4 · 10–27 см2, то есть более чем вдвое превышающее результат Ферми, и заключил, что графит, как и обычная вода, поглощает слишком много нейтронов и непригоден для поддержания цепной реакции в природном уране[1551]. Фон Хальбан и Коварский, работавшие теперь в Кембридже и поддерживающие связь с комитетом MAUD, также получили завышенную оценку сечения поглощения в углероде – вероятно, в обоих экспериментах использовался графит, загрязненный поглощающими нейтроны веществами, такими как бор, – но их результаты впоследствии сравнили с результатами Ферми. Боте такой проверки провести не мог. Предыдущей осенью Сцилард обратился к Ферми с новым призывом к соблюдению секретности:
Когда [Ферми] завершил свои измерения [поглощения в углероде], снова встал вопрос секретности. Я пришел к нему в кабинет и сказал, что то значение, которое он получил, возможно, не следует делать достоянием гласности. На этот раз Ферми в самом деле вышел из себя; он искренне полагал, что это бессмысленно. Мне больше нечего было сказать, но в следующий раз, когда я зашел к нему, он сказал мне, что к нему приходил Пеграм, и Пеграм считает, что публиковать это значение нельзя. С этого момента начал действовать режим секретности[1552].
И случилось это как раз вовремя, так что немецкие исследователи отказались от дальнейшей работы с дешевым и действенным замедлителем. Измерения Боте положили конец экспериментам с графитом в Германии. Ничто в документальных свидетельствах не говорит о том, что завышенная оценка была получена преднамеренно, но стоит отметить, что в 1933 году Боте, которому покровительствовал Макс Планк, не получил места директора Физического института Гейдельбергского университета из-за своей антинацистской политической позиции. «Эти отвратительные склоки настолько подорвали мое здоровье, – писал он впоследствии в коротких неопубликованных мемуарах, – что мне пришлось провести долгое время в санатории Баденвайлер». Когда Боте поправился, Планк устроил его в Физический институт Общества кайзера Вильгельма в Гейдельберге, но «нацисты по-прежнему притесняли меня и даже обвиняли в фальсификации научных результатов»[1553].
Почти в то же самое время – в начале 1941 года – Хартек выяснил в Гамбурге то, что Отто Фриш незадолго до этого выяснил в Ливерпуле. Фриш перебрался в этот промышленный портовый город на северо-западе Англии, чтобы работать с Чедвиком и на его циклотроне. Там он изготовил трубку Клузиуса, в чем ему помогал ассистент из студентов, которого приставил к нему Чедвик (они действовали в лаборатории так энергично и координированно, что получили совместное прозвище Frisch and Chips[1554]), и обнаружил, как рассказывает сам Фриш, что «гексафторид урана – один из тех газов, для которых метод Клузиуса не подходит»[1555]. Это открытие совершенно не отбросило британскую программу назад, так как Симон уже вовсю работал над барьерной газовой диффузией. А вот немецкие исследователи так верили в термодиффузию, что даже не озаботились рассмотрением каких-либо альтернативных вариантов. Они быстро занялись этим вопросом и выявили несколько перспективных методов; как ни странно, барьерная диффузия в их число не входила. Повторное рассмотрение проблемы разделения еще более ясно показало, что 235U и 238U можно разделить только методами грубой силы, причем очень дорогостоящими.
В марте 1941 года, когда Хартек после совещания с коллегами сообщил о своих результатах в Военное министерство, он подчеркивал, что, по общему мнению, разделение изотопов может быть осуществимо «только для особых случаев, в которых дешевизна является соображением лишь второстепенной важности»[1556]. Он имел в виду только для бомбы – так он сказал после войны историку Дэвиду Ирвингу. Немецкие физики ставили «особые случаи» на второе место в своем списке; прежде всего они рекомендовали в срочном порядке заняться производством тяжелой воды. Подобно Ферми и Сциларду, они выбрали вначале цепную реакцию на медленных нейтронах в природном уране. Если добиться получения этой реакции, то потом, возможно, появятся и «особые случаи». При тех неполных знаниях, которыми они располагали, у них не было другого выбора.
В октябре 1940 года подполковник Судзуки представил свой доклад генерал-лейтенанту Ясуде. Доклад этот был сосредоточен на одной основополагающей теме: возможности доступа Японии к месторождениям урана. Он рассмотрел не только саму Японию, но и Корею с Бирмой и заключил, что его страна может получить достаточные запасы урана. Следовательно, возможность создания бомбы существует.
Тогда Ясуда обратился к директору японского Физико-химического исследовательского института, который передал эту задачу ведущему японскому физику Ёсио Нисине. Нисина родился в конце периода Мэйдзи, и в 1940 году ему было пятьдесят лет. Он был известен своими теоретическими трудами по комптоновскому эффекту и ранее работал с Нильсом Бором в Копенгагене, где пользовался репутацией космополита и человека исключительного. Он построил в своей токийской лаборатории «Рикен» небольшой циклотрон, а в 1940 году занимался с помощью ассистента, учившегося в Беркли, созданием нового полутораметрового ускорителя с 250-тонным магнитом, планы которого предоставил ему Эрнест Лоуренс. Под началом Нисины в лаборатории «Рикен» работали более ста молодых японских ученых, лучшие из лучших. Они называли его «Оябун» – «Старик», и он руководил лабораторией на западный манер, поддерживая теплые и неформальные отношения с сотрудниками.
Измерение сечений началось в лаборатории «Рикен» в декабре. В апреле 1941 года был получен официальный приказ: военно-воздушные силы Императорской армии дали разрешение на проведение исследований, направленных на создание атомной бомбы[1557].
Все американское физическое сообщество знало Лео Сциларда как главного проповедника секретности работы над делением ядра. В конце мая 1940-го в его почтовый ящик пришло недоуменное письмо от принстонского физика Луиса А. Тернера. Тернер написал в редакцию Physical Review сообщение[1558], копию которого он переслал Сциларду. Оно называлось «Получение атомной энергии из U 238» (Atomic energy from U 238), и Тернер спрашивал, не следует ли отказаться от его публикации. «Кажется, эти рассуждения достаточно отвлеченны и не могут принести никакого вреда, – писал Тернер Сциларду, – но об этом лучше судить кому-нибудь другому»[1559].
В январском выпуске журнала Reviews of Modern Physics была опубликована блестящая обзорная статья Тернера по делению ядра[1560]; в ней цитировались почти сто статей, вышедших за двенадцать месяцев, которые прошли с момента сообщения об открытии Гана и Штрассмана. Само число этих статей говорило о важности этого открытия для физики и о поспешности, с которой физики взялись за исследование этой области. Тернер также отметил недавний отчет Нира и Колумбийского университета, подтверждавший, что деление медленными нейтронами происходит в 235U. Не заметить этот отчет было трудно: New York Times и другие газеты широко разрекламировали эту историю. Тернер писал Сциларду, то ли саркастически, то ли искренне, что ему было «несколько трудно понять руководящие принципы [секретности исследований деления] с учетом широкой огласки, которую получило недавно разделение изотопов»[1561]. То, что он прочитал при подготовке своего обзора, и новые измерения Колумбийского университета навели его на дальнейшие размышления; их результатом было письмо в Physical Review.
Поскольку деление медленными нейтронами происходит в 235U, говорилось в письме, а обычный уран состоит из этого изотопа всего на 1/140 часть, «естественно заключить, что в случае использования медленных нейтронов потенциальным источником атомной энергии можно считать лишь 1/140 часть любого количества урана»[1562]. Но на самом деле все может сложиться иначе, продолжал Тернер. Возможно, энергия деления большей части 238U, хотя ее и нельзя высвободить непосредственно, может быть высвобождена непрямым путем.
Тернер имел в виду возможность преобразования части урана, бомбардируемого нейтронами, в трансурановые элементы, те самые трансураны, на исчезновение которых в результате открытия деления надеялся Бор. При захвате нейтрона атом 238U превращается в изотоп 239U. Само это вещество может быть подвержено делению, предполагал Тернер. Но даже независимо от того, делится 239U или нет, его ядро энергетически неустойчиво и с высокой вероятностью превращается путем бета-распада в новые элементы, более тяжелые, чем уран. А один или несколько из этих элементов могут быть подвержены делению медленными нейтронами – что позволило бы использовать