Сознание как инстинкт. Загадки мозга: откуда берется психика — страница 33 из 53

не выглядел вторжением новой, до тех пор не существовавшей природы во вселенную[6].

А также:

Как эволюционисты мы должны твердо стоять на том, что любые вновь появляющиеся формы жизни – на самом деле не что иное, как результат перераспределения первичных и неизменяемых материй. Наш мозг образуют те же самые атомы, которые были хаотически рассеяны в туманности, а теперь застыли на какое-то время в определенных позициях, и «эволюция» мозга, если разобраться в ее сути, должна быть просто описанием процесса улавливания и расстановки атомов. В этом процессе ни на одной стадии нет никаких новых сущностей или сил, которых не было бы с самого начала[7].

Похоже, за последние несколько десятилетий мы забыли, что человеческое сознание не возникло невесть откуда, полностью сформированное, в мозге древнего человека такого-то, – нет, оно развивалось постепенно из своих предшественников. «Для плавного хода эволюции сознание в том или ином виде должно было быть в начале всего сущего»[8], – продолжает Джеймс. Да, вот так давно. Если мы хотим постичь смысл разрыва между психикой и мозгом, нам надо глубоко вникнуть в другие важные вопросы, например, в проблему возможности происхождения жизни из неживой материи.

Как мы увидим в этой главе, чтобы понять суть различий между живой и неживой материей, нам придется признать неизбежную двойственность всех способных к развитию сущностей – то есть признать, что все живое может одновременно пребывать в двух разных состояниях. Вы убедитесь в том, что устранить изначально заложенную проблему разрыва между живыми и неживыми системами можно средствами физики и биосемиотики, не призывая в систему призраков. Знания из области этих наук подсказывают подход к решению проблемы подобных пробелов в целом и заполнения их в частных случаях, а также помогают нейробиологам составить дорожную карту, чтобы разобраться с разрывом между психикой и мозгом в рамках многослойной архитектуры и с протоколами, которые описывают взаимодействие слоев. Но сначала займемся физикой.

Основы физики и приверженность идее детерминизма

Эта история начинается с Исаака Ньютона и блестящего старта классической физики в семнадцатом столетии. Той самой физики, с которой большинство из нас мучилось в школе. Оказывается, история с яблоком – это быль. Ньютон сам рассказал об этом своему биографу Уильяму Стьюкли, вспоминая тот день 1666 года, когда он сидел под яблоней, предаваясь раздумьям:

Почему яблоко непременно летит вниз перпендикулярно земле… Почему не вбок или вверх? но всегда к центру земли? причина, конечно же, в том, что земля притягивает его. должно быть, в веществе есть притягивающая сила. и должно быть, притягивающая сила земного вещества сосредоточена в центре земли, а не где-нибудь с краю. следовательно, яблоко падает перпендикулярно, то есть летит к центру. если таким образом вещество притягивает другое вещество, это должно быть соразмерно его количеству. стало быть, земля притягивает яблоко, а яблоко точно так же притягивает землю[9].

Джон Кондитт, муж племянницы Ньютона, рассказывал о том, как рассуждал далее Ньютон – может ли эта сила распространиться за пределы земли: «Почему бы не ввысь, до самой Луны, спрашивал он себя, и если так, то это должно бы оказывать действие на ее движение и, вероятно, удерживать ее на орбите, и тогда он принялся за расчеты, к чему могла бы привести эта гипотеза»[10]. И расчеты были произведены. Результаты исследований «земного» движения, которые проводил Галилей, Ньютон облек в математическую форму, и теперь эти уравнения называются законами механики. Галилей показал, что если на тело не действуют никакие силы, то скорость и направление его движения остаются постоянными; тела обладают свойством сопротивляться изменениям характера движения, и это свойство называется инерцией; и наконец, трение представляет собой силу. Последнее из этих открытий представлено в третьем законе: всякому действию соответствует равное по величине и обратное по направлению противодействие. Размышляя о яблоках и выполнив различные расчеты, Ньютон пришел к закону всемирного тяготения и к пониманию того, что уложенные им в математические формулы законы «земного» движения справедливы и для наблюдений Иоганна Кеплера за движением планет. Неплохой итог трудового дня.

Так было сделано великое открытие. Ньютон предложил ряд понятных и неизменных математических выражений, которые описывали, без преувеличения, механику всех физических объектов во вселенной, – от мячей для игры в бочче до планет. Это универсальные и непреложные законы. Они не зависят ни от самого Ньютона, который их изучал, ни от Кеплера, ни от кого другого. Есть наблюдатели или нет, вселенная и все системы в ней послушно следуют этим законам, управляющим пространством, временем, материей и энергией. Если дерево падает в лесу, где никто этого не видит, звуковые волны все равно распространяются. Услышит кто-нибудь шум или нет – это другой вопрос, и, как мы скоро поймем, это принципиальное отличие прекрасно иллюстрирует суть нашей проблемы происхождения жизни.

Ньютон взбудоражил не только научную мысль. Считалось, что раз его законы универсальны, то теоретически они позволяют при известных начальных условиях предсказать любое событие в материальной вселенной. Следовательно, все предопределено, в том числе и ваши действия, поскольку вы тоже физический объект вселенной. Подставьте в уравнение нужные исходные параметры, и вы узнаете, что произойдет в будущем – даже то, чем вы займетесь вечерком после работы в следующий четверг. Но при таком подходе ускользает от внимания один важный момент. Как мы увидим в скором времени, исходные параметры в формулу подставляет экспериментатор по своему усмотрению, и его субъективный выбор – это что-то вроде волка в овечьей шкуре. Тут все не так уж просто.

Получается, что законы Ньютона идут вразрез со свободной волей и, таким образом, снимают с человека ответственность за его действия. Поначалу детерминизм овладел умами физиков, но довольно быстро под его влияние попали и многие другие. Тем не менее, хотя к ньютоновской точке зрения на мир еще надо было привыкнуть, открытые Ньютоном законы хорошо описывали большинство наблюдаемых в природе событий и в течение следующих двух столетий считались незыблемыми. Однако вскоре ньютоновская физика подверглась серьезному испытанию – ей пришлось иметь дело с новым изобретением, а именно с паровой машиной. В 1698 году военный инженер Томас Севери запатентовал первый промышленный механизм, предназначенный для откачки воды из затопленных угольных шахт. Со временем конструкцию паровых машин усовершенствовали, но у них остался весьма досадный недостаток – их производительность была ничтожно мала по сравнению с количеством сжигаемой в качестве топлива древесины.

Первые паровые машины рассеивали и забирали чересчур много энергии, поэтому работали крайне неэффективно. В полностью детерминированном мире, концепцию которого представил Ньютон, это казалось бессмысленным, и в итоге физики-теоретики столкнулись с загадкой явно потерянной энергии. Так родилась новая область науки – термодинамика, а вместе с ней изменились и представления о природе. Это касалось связи тепла и температуры с энергией и работой. Когда об этом задумались всерьез, физика изменилась навсегда, а детерминистский ньютоновский мир стал выглядеть несколько иначе.

Рождение квантовой механики и статистическая точка зрения на причинно-следственные связи

Прошло немного времени, и проблема паровой машины привела к формулировке двух законов термодинамики. Первый из них гласит, что внутренняя энергия изолированной системы всегда постоянна. По сути, это вариант закона сохранения энергии, согласно которому энергию нельзя создать и ликвидировать, но одна ее форма может перейти в другую. Это утверждение полностью соответствует ньютоновскому детерминизму, но применимо в ограниченных условиях, так как справедливо только для закрытых и изолированных систем.

Со вторым законом термодинамики все гораздо интереснее и не так однозначно; в нем участвует новое понятие – энтропия. Второй закон говорит о том, что, скажем, тепло не может самопроизвольно перетекать оттуда, где холодно, туда, где теплее. Помню, как однажды я лично столкнулся с этой проблемой. Был морозный зимний день в Дартмуте, и я ждал у себя в кабинете одного физика, чтобы с ним побеседовать. Он шел ко мне через весь кампус Грин, по открытому всем ветрам пространству, и даже куртка его промерзла. Поздоровавшись, я весело заметил, что от одежды гостя, вошедшего с улицы, всегда веет холодом и мне самому становится холодно. Он посмотрел на меня и сказал: «Давайте-ка разберемся с физикой. Холод вам не передается. Это тепло вашего тела передается мне. Вы начинаете мерзнуть, потому что из вашего тела уходит тепло». Напомнив, что второй закон термодинамики может оказаться весьма кстати даже для объяснения явлений повседневной жизни, коллега добавил, что нам, пожалуй, следует взять на работу еще одного физика-теоретика.

Термин «энтропия» ввел немецкий физик XIX века Рудольф Клаузиус для описания «потерянного тепла». Это мера тепловой энергии, которая не может быть потрачена на полезную работу. Холодная куртка того физика увеличила мою энтропию, а вместе с тем уменьшилось и количество энергии, которая поддерживает тепло моего тела[11]. Второй закон – это область, где пропадает ясность. Если коротко, то теплообмен с участием курток и паровых машин необратим. Поборников ньютоновской теории и детерминизма в физике это известие шокировало. Время вдруг перестало быть обратимым – стрела времени летела только в одну сторону. Таким образом, термодинамика вошла в противоречие с универсальными законами Ньютона, которые гласили, что все в принципе обратимо. И вот эта подрывающая все устои мысль мало-помалу просочилась в другие кон