При нормальных зазорах в тормозных механизмах и отсутствии в системе воздуха педаль тормоза при нажатии на нее ногой не должна перемещаться более чем на 80–85 мм ее хода. При этом нога должна ощущать сильное сопротивление (ощущение «жесткой» педали).
Если педаль перемещается дальше, но педаль «жесткая», то это указывает на увеличенный зазор между колодками, дисками и барабанами. В этом случае необходимо произвести несколько резких торможений на сухой свободной дороге, чтобы уменьшить зазоры.
Если даже при продолжительном удалении воздух продолжает выходить в сосуд в виде пузырьков, значит, он проникает в систему из-за повреждения трубопроводов, недостаточной герметичности соединений, а также вследствие неисправности главного или колесного цилиндров.
3.6. Рулевое управление
3.6.1. Принцип действия рулевого управления
Рулевое управление служит для изменения направления движения автомобиля. При неподвижной передней оси изменение направления движения автомобиля осуществляется поворотом передних управляемых колес. Для того чтобы при движении автомобиля на повороте колеса его имели качение без бокового скольжения, они должны катиться по окружностям, описанным из одного центра, который называется центром О (рис. 3.6.1, а) поворота. В этом центре должны пересекаться продолжения осей всех колес. Для соблюдения данного условия внутреннее к центру поворота управляемое колесо должно поворачиваться круче, т. е. на больший угол, чем наружное колесо.
Рис. 3.6.1. Схемы рулевого управления и движения автомобиля в повороте: а – схема поворота управляемых колес, б — схема действия рулевого управления; 1 – балка, 2 – рычаги поворотных цапф, 3 – поперечная рулевая тяга, 4 — рулевое колесо, 5 — рулевая колонка, 6 – рулевой вал, 7 – червячный механизм, 8 — сошка, 9 — продольная тяга, 10 — рычаг, 11 – поперечная тяга, 12 — поворотный кулак, 13 – рычаг сошки
Такая схема поворота конструктивно обеспечивается рулевой трапецией, сторонами которой являются балка 1 управляемого моста, поперечная рулевая тяга 3 и рычаги 2 поворотных цапф. Рулевая трапеция вместе с механизмами и устройствами, обеспечивающими поворот автомобиля, составляет рулевое управление.
Простейшая схема рулевого управления представлена на рис. 3.6.1, б. При вращении рулевого колеса 4 поворачивается рулевой вал 6 , расположенный внутри рулевой колонки 5. На нижнем конце вала закреплен червячный механизм 7, сообщающий угловые перемещения сошке 8. С помощью продольной тяги 9 и рычага 13 сошка поворачивает левый поворотный кулак с расположенным на его цапфе колесом. Одновременно левый кулак посредством рычага 10 и поперечной тяги 11 поворачивает правый поворотный кулак 12 , а вместе с ним и колесо, установленное на его цапфе.
Рулевое управление состоит из рулевого механизма и рулевого привода. Для облегчения управления автомобилем в рулевой привод может входить усилитель. Однако легкость управления зависит прежде всего от общего передаточного числа рулевого управления, которое определяется отношением угла поворота рулевого колеса к углу поворота управляемых колес автомобиля. Общее передаточное число рулевого управления равно произведению передаточных чисел рулевого механизма и рулевого привода.3.6.2. Рулевые механизмы
Рулевой механизм служит для передачи усилия от рулевого колеса на рулевой привод и уменьшения усилия, необходимого для поворота автомобиля. Передаточное число рулевых механизмов находится в пределах 15–30, вследствие чего усилие, передаваемое сошкой, значительно больше усилия, приложенного к рулевому колесу. Применяются также рулевые механизмы с непостоянным передаточным числом, которое увеличивается по мере перемещения их рабочей пары к среднему положению. Это способствует уменьшению обратных ударов в рулевое колесо при наезде управляемых колес на неровности дороги. С этой же целью в приводе рулевого управления уменьшают плечо поворота колеса.
В зависимости от нагрузки на управляемый мост автомобиля предусмотрено несколько типов рулевых механизмов. Наиболее распространенными из них являются червячно-роликовые (червяк – ролик, червяк – сектор) и винтореечные (винт – шариковая гайка – сектор). Червячно-роликовый рулевой механизм в виде червячной передачи с червяком глобоидной формы и двух– или трехгребневым роликом (червяк-ролик) применяется на большинстве легковых и многих грузовых автомобилях.
Рис. 3.6.2. Рулевой механизм типа червяк – трехгребневый ролик:
1 – картер, 2 – вал сошки, 3 – трехгребневый ролик, 4 – прокладки,
5 – глобоидный червяк, 6 — вал рулевого колеса, 7 – ось, 8 – роликоподшипник, 9 – стопорная шайба, 10 – колпачковая гайка,
11 – регулировочный винт, 12 – штифт, 13 – сальник, 14 – сошка,
15 – гайка, 16 – бронзовая втулкаРулевой механизм такого типа показан на рис. 3.6.2. В картере 1 на двух конических роликоподшипниках вращается глобоидный червяк 5, установленный на валу 6 рулевого колеса. В зацепление с червяком входит трехгребневый ролик 3, вращающийся на цилиндрическом роликоподшипнике, установленном на оси 7, запрессованной в фасонную головку вала 2 рулевой сошки.
Опорами вала сошки служит с одной стороны роликоподшипник 8, ас другой – бронзовая втулка 16. С этой же стороны вал сошки уплотняется сальником 13. Сошка /4 установлена на шлицах вала и удерживается гайкой 15. Под нижней крышкой картера расположены прокладки 4 , служащие для регулировки конических роликоподшипников червяка 5. Регулировка глубины зацепления ролика 3 с червяком 5 производится осевым перемещением вала 2 сошки (в пределах величины И) с помощью регулировочного винта 11, установленного в крышке картера. Винт закрыт колпачковой гайкой 10 и фиксируется стопорной шайбой 9 со штифтом 12.
Рабочая пара типа червяк – ролик имеет зацепление с переменным зазором. В средней части, соответствующей положению колес для движения автомобиля по прямой, зазор имеет минимальную величину (0,03 мм); при повороте рулевого колеса он увеличивается, так как уменьшается высота зубьев сектора от середины к крайним точкам. При этом по мере поворота автомобиля в ту или иную сторону свободный ход рулевого колеса также возрастает, достигая в крайних положениях 25–30°. Наличие переменного зазора в соединении червяк – ролик повышает чувствительность рулевого управления при среднем положении колес и облегчает вывод рулевого колеса из крайних положений. Рулевой механизм данного типа имеет малые потери на трение, так как при работе ролик не скользит, а катится по червяку, вследствие чего снижается изнашивание деталей и затрачивается меньше усилий на управление автомобилем.
На автомобилях большой грузоподъемности для облегчения управления ими рулевые механизмы имеют большие передаточные числа. При этом не допускается значительного повышения удельной нагрузки на поверхности рабочей пары рулевого механизма. В рулевых управлениях таких автомобилей применяют механизм червяк – сектор с большой поверхностью зацепления или механизм с двумя рабочими парами: винт с гайкой на циркулирующих шариках и зубчатую рейку с сектором. Последнее нашло широкое распространение на автомобилях КамАЗ, ЗИЛ и др.
3.6.3. Рулевой привод
Под рулевым приводом понимается система рычагов, валов и тяг, образующих рулевую трапецию и служащих для передачи усилия от сошки на управляемые колеса. В рулевой трапеции длины плеч рычагов подбирают таким образом, чтобы было обеспечено правильное соотношение углов поворота управляемых колес.
Конструкция рулевого привода зависит от типа передней подвески. При зависимой подвеске колес трапеция делается цельной, а при независимой – расчлененной. При расчлененной трапеции поперечную рулевую тягу выполняют разрезной, состоящей из нескольких частей. Это необходимо для того, чтобы рулевой привод не ограничивал перемещение каждого из колес, подвешенных независимо один от другого.
При независимой подвеске передних колес легковых автомобилей применяется расчлененная рулевая трапеция. Она имеет поперечную рулевую тягу, состоящую из шарнирно соединенных частей, которые позволяют колесам перемещаться независимо одно от другого.
Рулевой привод при независимой подвеске колес включает в себя сошку 5 (рис. 3.6.3), маятниковый рычаг 7, закрепленный шарнирно на подшипнике, поперечную тягу 6 , соединяющую сошку с маятниковым рычагом, боковые тяги 4 и два поворотных рычага 1, жестко связанные с цапфами передних колес.
Рис. 3.6.3. Расчлененный рулевой привод: 1 – поворотные рычаги, 2 – наконечники, 3 — регулировочные трубки, 4 – боковые тяги, 5 — сошка, 6 — поперечная тяга, 7 – маятниковый рычаг, 8 — стяжные болты, 9 — хомутики, 10 – палец, 11 – вкладыши, 12 – пружина, 13 – опорная пята, 14 — уплотнитель
Боковые тяги и наконечники 2 соединяются между собой регулировочными трубками 3, имеющими на концах правую и левую резьбы, что позволяет при необходимости производить регулировку схождения колес. Произвольное отвертывание трубок предотвращается хомутиками 9 со стяжными болтами 8. В рассматриваемом рулевом приводе применено шесть шаровых шарниров (показаны стрелками). Сверху сферическая поверхность пальца 10 упирается во вкладыши 77, к которым он прижимается через опорную пяту 13 пружиной 12. Наличие пружины делает шарнирное соединение самоподтягивающимся, не требующим регулировки до определенной величины износа сферических поверхностей пальца и вкладышей. От попадания грязи и вытекания смазочного материала шарнир защищен уплотнителем