Справочник автолюбителя — страница 24 из 68

Непрерывный рост потребности в жидком топливе и ограниченность ресурсов нефти обусловливают необходимость поисков новых альтернативных видов топлива, получаемых не из нефти, а из другого сырья. В качестве источника получения такого топлива в первую очередь рассматривают уголь, запасы которого в мире превосходят запасы нефти и газа. При переработке угля можно получить жидкие продукты, содержащие углеводороды и неуглеводородные примеси. Наиболее прогрессивными являются методы термической обработки угля в атмосфере водорода в присутствии катализаторов. Из получающейся при этом смеси широкого фракционного состава могут быть получены бензин и дизельное топливо.

Переработка угля путем газификации водяным паром дает синтез-газ, из которого дальнейшей каталитической переработкой также получают жидкое топливо. Однако получение жидкого топлива из угля в настоящее время обходится дороже, чем производство их из нефти. По ориентировочным подсчетам, переработка дешевого угля в жидкое топливо на месте может быть рентабельной при «ожижении» углей существующими методами.

Газообразные углеводороды применяют в качестве топлива для многих котельных установок, электростанций, промышленных печей и других топочных устройств. Газовое топливо используют не только в промышленности, но и в быту. Газовая промышленность страны – это одна из наиболее быстро развивающихся отраслей народного хозяйства. Темпы роста добычи и производства горючих газов за последние годы опережают темпы роста добычи других видов топлива.

Газообразные углеводороды находят применение в качестве топлива для двигателей внутреннего сгорания и, в первую очередь, для двигателей с принудительным зажиганием (подробнее об особенностях эксплуатации автомобилей с газовым оборудованием см. в разд. 8.4). Появляется все больше автомобилей, рассчитанных на использование газового топлива.

Углеводородные газовые виды топлива для автомобилей по их агрегатному состоянию при обычных температурах делят на сжатые и сжиженные. Основной газообразный углеводород, который применяют в сжатом виде, – метан. Этот углеводород при температуре выше – 82 °C (критическая температура) нельзя превратить в жидкость даже при сжатии до любых высоких давлений. На автомобилях сжатый газ хранят в баллонах при давлении до 20 мПа. Метан добывают не только на газовых месторождениях, но и получают в виде попутного газа на многих нефтяных месторождениях. Размещение ресурсов природных газов в разных районах страны и широкое развитие магистральных газопроводов позволяют считать метан в сжатом виде весьма перспективным топливом для двигателей внутреннего сгорания.

Сжиженные газообразные виды топлива содержат, в основном, пропан и бутан. Каждый из этих углеводородов в отдельности или в смеси хранят при обычных температурах в жидком виде в баллонах при давлении 1,6 мПа. Критическая температура для пропана —97 °C, для бутана —126 °C. Сжиженные газы в качестве автомобильного топлива имеют ряд преимуществ перед сжатыми газами, поэтому на сегодня они получили более широкое распространение. Однако большие запасы метана определяют перспективность использования сжатых газов в качестве топлива для двигателей.

В последние годы возрос интерес к применению метана и в сжиженном виде при очень низких температурах. Изготовлены специальные топливные баки с соответствующей изоляцией, которые позволяют свести к минимуму потери жидкого метана при его использовании.

Из газообразных альтернативных видов топлива для двигателей следует упомянуть водород. Высокая теплота сгорания и отсутствие вредных веществ в продуктах сгорания ставят водород в ряд самых предпочтительных видов топлива для двигателей. Но высокая стоимость водорода и трудности, связанные с заправкой и хранением, пока препятствуют его широкому использованию. Ведутся исследовательские работы по применению водорода не только как самостоятельного топлива, но и как добавки к обычным видам топлива нефтяного происхождения.

Среди альтернативных видов топлива можно также выделить такие кислородсодержащие продукты, как спирты и эфиры. Один из эфиров – метил-третбутиловый эфир – оказался эффективным компонентом автомобильных бензинов. Введение его в бензин улучшает важнейшее эксплуатационное свойство – детонационную стойкость. Этот эфир прошел все испытания с положительными результатами, и во многих странах сейчас строятся установки по производству метил-третбутилового эфира в промышленных масштабах. Широкое применение его в качестве компонента автомобильных бензинов начнется в ближайшее время.

Из спиртов наиболее интересен метанол, причем как самостоятельный вид топлива, так и как компонент топлива нефтяного происхождения. Метанол привлекает прежде всего широкими сырьевыми возможностями. Его можно производить из газа, угля, древесины, биомассы, различного рода отходов и др. Использовать метанол можно непосредственно как топливо или как промежуточное сырье для получения различных соединений. Добавление 5 % метанола в бензин нефтяного происхождения не вызывает каких-либо трудностей в эксплуатации двигателей и уже сейчас практикуется в некоторых странах. Правда, наряду с преимуществами, метанол имеет и недостатки, над преодолением которых в настоящее время работают и у нас в стране, и за рубежом. К недостаткам метанола следует отнести его высокую токсичность, меньшую теплоту сгорания, высокую теплоту испарения, коррозионную активность, гигроскопичность и др. Тем не менее широкие сырьевые ресурсы позволяют считать метанол перспективным топливом. Ведутся работы по применению метанола не только в двигателях с принудительным зажиганием, но и в дизелях.

4.4. Эксплуатационные свойства топлива

В соответствии с назначением топлива процесс сгорания является главнейшим и определяющим его эксплуатационные свойства. Иными словами, способность топлива сгорать достаточно полно и равномерно при любых режимах эксплуатации с выделением наибольшего количества тепла – это и есть его важнейшее эксплуатационное свойство. Эксплуатационное свойство формируется и обусловливается несколькими показателями качества топлива – теплотой сгорания, детонационной стойкостью, пределами стабильного горения и т. п.

Процессу сгорания топлива, безусловно, предшествуют процессы его испарения, воспламенения и многие другие. Характер поведения топлива в каждом из этих процессов и составляет суть основных эксплуатационных свойств топлива. В настоящее время рассматривают и оценивают следующие эксплуатационные свойства топлива.

Испаряемость характеризует способность топлива переходить из жидкого состояния в парообразное. Это свойство формируется из таких показателей качества топлива, как фракционный состав, давление насыщенных паров при различных температурах, поверхностное натяжение и др. Испаряемость имеет важное значение при подборе топлива и во многом определяет технико-экономические и эксплуатационные характеристики двигателей.

Воспламеняемость характеризует особенности процесса воспламенения смесей паров топлива с воздухом. Оценка этого свойства базируется на таких показателях качества, как температурные и концентрационные пределы воспламенения, температуры вспышки и самовоспламенения и др. Показатель воспламеняемости топлива имеет такое же значение, как и его горючесть; в дальнейшем эти два свойства рассматриваются совместно.

Горючесть определяет эффективность процесса горения топливовоздушных смесей в камерах сгорания двигателей и топочных устройствах.

Прокаливаемость характеризует поведение топлива при перекачках его по трубопроводам и топливным системам, а также при его фильтровании. Это свойство определяет бесперебойность подачи топлива в двигатель при разных температурах эксплуатации. Прокачиваемость топлива оценивают вязкостно-температурными свойствами, температурами помутнения и застывания, предельной фильтруемостью, содержанием воды, механических примесей и др.

Склонность к образованию отложений — это способность топлива образовывать отложения различного рода в камерах сгорания, в топливных системах, на впускных и выпускных клапанах. Здесь подразумеваются отложения, образующиеся как при относительно низких температурах в системах питания и смесеобразования двигателей, так и отложения нагара, получающиеся при высоких температурах в процессе сгорания топлива. Оценка этого свойства базируется на таких показателях, как зольность, коксуемость, содержание смолистых веществ, непредельных углеводородов и т. д.

Коррозионная активность и совместимость с неметаллическими материалами характеризует способность топлива вызывать коррозионные поражения металлов, набухание, разрушение или изменение свойств резин, герметиков и других материалов. Это эксплуатационное свойство предусматривает количественную оценку содержания в топливе коррозионно-активных веществ, испытание стойкости металлов, резин и герметиков при контакте с топливом.

Защитная способность — это способность топлива защищать от коррозии материалы при их контакте с агрессивной средой в присутствии топлива и в первую очередь способность топлива защищать металлы от электрохимической коррозии при попадании воды. Это свойство оценивается специальными методами, предусматривающими воздействие обычной и морской воды на металлы в присутствии топлива.

Противоизносные свойства характеризуют уменьшение изнашивания трущихся поверхностей в присутствии топлива. Это свойство имеет важное значение для двигателей, у которых топливные насосы и топливно-регулирующая аппаратура смазывается только самим топливом без подачи смазочного масла. Свойство оценивается показателями вязкости и смазывающей способности.

Охлаждающая способность определяет возможность топлива поглощать и отводить тепло от нагретых поверхностей при использовании топлива в качестве теплоносителя. Свойство имеет значение в тех случаях, когда топливо применяют для охлаждения масла (топливомасляные радиаторы) или наружной обшивки летательного аппарата при больших скоростях полета. Оценка свойства базируется на таких показателях качества, как теплоемкость и теплопроводность.