ли результаты с общей популяцией. Оказалось, что родственники долгожителей отличаются по ряду физиологических параметров и, что очень важно, по состоянию деятельности нервной системы. Кроме того, у родственников долгожителей менее выражены изменения в генетическом аппарате клеток, в состоянии хромосом.
Означает ли все это, что человек, не имеющий долголетних родителей, не может жить долго. Прямые исследования показали, что только у 30–60 % долгожителей были в роду долголетние предки; в остальных случаях решающее значение имели средовые факторы. Наследование окажется меньше, если учесть, что в семьях долгожителей, а они часто многодетны, только немногие потомки живут долго. Таким образом, в случае феномена долголетия речь идет не о какой-то генетической запрограммированности процесса старения, а о детерминированности биологической организации человека, высокой надежности его систем и организма в целом, делающей его более долговечным.
В продолжительности жизни потомки не просто повторяют своих родителей. При слиянии половых клеток, при формировании организма возможны такие генетические перекомбинации, которые могут привести к рождению долголетнего потомка, у родителей, не отличавшихся большой продолжительностью жизни.
Кроме того, следует иметь в виду, что "наследственный фонд" — половые клетки — не ограждены от многих событий, происходящих в организме. Особенно существенны влияния на них факторов нейрогуморальной регуляции. И, наконец, образ жизни, среда могут по-разному изменять соотношение процессов старения и витаукта; в одном случае стимулировать процессы витаукта, способствуя реализации оптимума биологических возможностей организма, высокой продолжительности жизни; в другом — активировать процессы старения, способствуя развитию ускоренного старения, сокращению сроков жизни. Они неизбежно становятся основой развития многих болезней, ибо старость — это переплетение физиологического и патологического.
Глава 3. Механизмы старения и витаукта
Есть озарения, опережающие целые эпохи… Середина прошлого века. Еще неизвестно строение белков, не раскрыты их важнейшие свойства. Крупнейший химик тех времен Байер пишет: "Нет никакой надежды в ближайшее время выяснить строение белка. Должны ли мы заниматься подобного рода вопросами, если возможность их разрешения в ближайшее время невероятна, или же будем продолжать работу в тех областях, где наверное соберем богатую или хотя бы скромную жатву. Я предпочитаю последнее". И почти за двадцать лет до этого — гениальное предвидение Ф. Энгельса: "Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел" (К. Маркс, Ф. Энгельс. Т. 20. С. 82). С тех пор прошло более ста лет. Известны характеристики живого, раскрыты тайны биосинтеза белка, и все это только подтверждает формулу Ф. Энгельса. Прямое развитие этих представлений — все современные концепции, связывающие старение с изменениями в генетическом аппарате, в механизмах биосинтеза белка.
Величайшим достижением современности явилось раскрытие роли генетического аппарата ядра клетки в синтезе белков. Здесь, в молекуле дезоксирибонуклеиновой кислоты — ДНК, заложен код, вся информация для синтеза белков. Эта информация определяет и особенности передачи по наследству, и деление клетки, и фундаментальные механизмы приспособления клетки к среде.
Генетический код, заключенный в молекуле ДНК-система расположения в ней пар нуклеотидов, — определяет последовательность расположения аминокислот в молекуле белка и его структуру. На молекуле ДНК, как на матрице, синтезируется информационная РНК (иРНК), обладающая тем же кодом, что и участок ДНК, на котором она образуется (рис. 9). Существуют гены-регуляторы, обеспечивающие порядок считывания генетической информации, и структурные гены с заключенным в них кодом построения белков.
Рис. 9.Упрощенная схема регуляции биосинтеза белка. Взаимодействие специфических регуляторов (метаболисты, белки) с регуляторным участком ДНК определяет возможность для РНК-полимеразы инициировать транскрипцию, считывание генетической информации с определенных участков структурных генов. Образующаяся в результате транскрипции информационная РНК (иРНК) служит матрицей для биосинтеза белка в рибосомах
Синтез белка осуществляется в специальных органоидах клетки — рибосомах. Рибосомы либо свободно расположены в клетке, либо связаны с ее мембранами. В рибосомах 40–60 % рибосомальной РНК, а все остальное приходится на белок. Сейчас установлены основные механизмы сборки белка в рибосомах. Белок состоит из отдельных аминокислот, содержащихся в клетке. Перенос аминокислот к рибосомам осуществляется специальной транспортной РНК (тРНК). Матрицей для сборки белка является и РНК. Она несет код построения белка, отпечатанный с соответствующего участка ДНК. Информационная РНК, подобно пулеметной ленте, протягивается через рибосому. Аминокислоты, связанные с тРНК, занимают соответствующее место в образующейся цепи, а затем "сшиваются" специальными ферментами — так возникает белковая молекула. На одной иРНК могут синтезироваться все новые и новые молекулы данного белка. Процесс считывания генетической информации получил название транскрипции, а передачи информации — трансляции.
Все клетки организма произошли от одной единственной клетки — оплодотворенного яйца. Вот почему, несмотря на существование до тысячи различных типов клеток в данном организме, они содержат одинаковый геном — ДНК с одинаковым набором информации. Следовательно, дифференцировка, возникновение того или иного типа клеток, характер ее последующей структуры и функции зависят не от различий в строении ДНК в разных клетках одного и того же организма, а от особенностей реализации генетической информации, регулирования генетической активности. Человеческая память хранит множество слов. Однако для выражения определенной мысли необходимо подобрать только часть, связав их определенным смыслом. Подобно этому, для специализации, дифференцировки различных клеток нужны своя система работы генов, определенный набор белков, соответствующее пространственное их расположение, и все это определяется механизмами регуляции генома.
Сейчас все исследователи единодушны в том, что первичные механизмы старения связаны с возрастными изменениями в генетическом аппарате клеток. Первичные не потому, что они возникают раньше других, а потому, что, возникнув, они вызывают существенные нарушения в биосинтезе белка и дальнейшие нарушения в структуре и функции клеток. Не прекращаются споры о том, как и почему нарушается работа генетического аппарата, ведущая к нарушению деятельности, а затем — к гибели клеток. Среди наиболее популярных — так называемая гипотеза ошибок. Предполагается, что в течение жизни возникают ошибки в генетическом коде, что ведет к синтезу ошибочных белков, не выполняющих своей функции, более того, нарушающих деятельность клетки. Однако показано, что нуклеотидный состав ДНК с возрастом не меняется, и убедительных доказательств существования ошибочных белков пока не найдено.
В 1965 г. автор этой книги выдвинул генорегуляторную гипотезу старения, в соответствии с которой нарушения в регулировании генома играют центральную роль в механизме старения. Иными словами, не содержание хранящейся в геноме информации, а ее реализация определяет процессы старения. Очевидно, в большей мере в старении клетки играют роль нарушения в регуляторных генах, контролирующих считывание информации со структурных генов. Можно условно выделить три этапа в нарушении синтеза белка с возрастом. Первый — догеномный, когда возникают множественные нарушения в различных местах клетки, восстанавливаемые, однако, благодаря работе генетического аппарата. Второй — генорегуляторный, определяющий развитие необратимых изменений в синтезе белка, в структуре клетки. Он связан с нарушением реализации генетической информации. Третий — геноструктурный, связан с нарушением структурных генов и содержания генетической информации.
Благодаря генорегуляторным сдвигам изменяется соотношение синтеза различных белков, снижаются потенциальные возможности белоксинтезирующих систем, активируются, "пробуждаются" ранее не работавшие гены.
На основе этих изменений биосинтеза белка и происходит нарушение жизнедеятельности клеток, особенно выраженное с завершением онтогенеза.
Принципиально важно, что при изучении особенностей регулирования генома, структурно закрепленных его свойств можно понять фундаментальные механизмы развития не только старения, но и процесса витаукта. Основные механизмы жизнедеятельности организма, механизмы, направленные на увеличение продолжительности жизни, связаны с особенностями регуляции генетического аппарата. Ведь большинство различий между видами млекопитающих, столь отличающихся по продолжительности жизни, заключается в особенностях регулирования генома. Человек и шимпанзе, эволюция которых разошлась 8-20 млн. лет назад, мало отличаются по составу структурных генов. Продолжительность жизни самого человека, изменившаяся за несколько миллионов лет, связана со сдвигами в регулировании генома. Итак, существует связь между видовыми особенностями регулирования генома и продолжительностью жизни, процессами витаукта и старения. Регуляторный отдел генома, занимающий большую его часть (до 95 % ДНК), чрезвычайно активен; он менее других защищен от внутриклеточных влияний и больше всего подвержен возрастным изменениям.
В последние годы показана мозаичность структуры генов. Структурный ген, содержащий код для построения белка, разделен на отдельные участки — экзоны. Интронами называются участки ДНК, разделяющие экзоны. В процессе транскрипции (считывания) образуется РНК со всех экзонов и интронов. Затем включается процесс сплайсинга. Суть его состоит в следующем — из длинной молекулы РНК вырезаются участки, соответствующие экзонам. Вновь образованная молекула РНК проходит ядерную мембрану и переходит в цитоплазму. Оставшиеся в ядре в результате сплайсинга фрагмен