n движения по часовой стрелке, как показывает длинная жирная стрелка. Представим себе шар М, при этом его последовательные положения 1, 2, 3–8 в пространстве, а также относительно спицы будут именно такими, какими они изображены на чертеже, тогда анализ этого графика делает очевидным тот факт, что шар, перемещаясь с угловой скоростью ω вокруг О в направлении часовой стрелки, вращается относительно своей оси с той же угловой скоростью, но в противоположном направлении, указанном пунктирной стрелкой. Объединенный результат этих двух движений есть такое поступательное движение шара, что все частицы приводятся в движение с одной и той же скоростью V, которая равна скорости его центра тяжести. В этом случае, при условии, что нет абсолютно никакого трения, кинетическая энергия каждого шара будет определяться произведением ½MV², и не приблизительно, а с математической точностью. В случае, когда оси плотно закреплены и шары жестко зафиксированы на спицах, такое вращательное движение относительно осей становится физически невозможным, и тогда выясняется, что кинетическая энергия каждого шара возрастает, при этом прирост абсолютно равен энергии вращения шара на своей оси.
Этот факт, подкрепленный и теоретически, и экспериментально, является основой всеобщей убежденности, что вращающееся тело — в данном варианте шар М, обращая всегда одну и ту же сторону к центру движения, как ни странно, вращается на своей оси в том направлении, которое обозначено короткой сплошной стрелкой. Но вращения не происходит, хотя, на первый взгляд, кажется, что оно есть. Заблуждение выявится в ходе дальнейшего исследования.
Для начала обратите внимание на то, что, когда масса, скажем, якорь электромотора, вращающийся с угловой скоростью ω, реверсирует, его скорость равна -ω, а разность ω — (-ω) = 2ω. Тогда, если шар зафиксировать на спице, разность угловой скорости составит лишь ω: следовательно, ему должна быть сообщена дополнительная скорость ω, чтобы вызвать вращение шара на собственной оси по часовой стрелке в истинном значении слова. Тогда кинетическая энергия была бы равна сумме энергий поступательного и осевого движений, не просто в абстрактном математическом значении, но в качестве физического явления. Я в полной мере осознаю, что, согласно широко распространенному мнению, если шар не зафиксирован на стержне, он вообще не поворачивается на своей оси, он лишь вращается с угловой скоростью всей конструкции, будучи жестко закрепленным на той же оси, но истина будет очевидна после более детального изучения этого вида движения.
Пусть система вращается, как было принято и проиллюстрировано вначале, когда шары не закреплены на стержнях, и пусть стержни постепенно закрепляются, вызывая трение, которое медленно уменьшает и, в конце концов, препятствует скольжению. На начальном этапе все части каждого шара перемещались со скоростью центра тяжести, но так как подшипниковое сопротивление всё более и более заявляет о себе, поступательная скорость частиц, находящихся ближе к оси О, будет убывать, в то время как таковая диаметрально противолежащих частиц будет возрастать, пока не будут достигнуты максимальные значения этих изменений, когда шары прочно закреплены. В этом процессе мы, таким образом, отбираем массы у частиц, находящихся ближе к центру движения, и тем самым кинетическую энергию поступательного движения, в то же время добавляем к энергии тех частиц, которые находятся дальше и, очевидно, что прирост окажется бóльшим, чем потеря, так что фактическая скорость каждого шара в целом возрастет. Только за счет этого мы имеем возрастание кинетической энергии системы, а не по причине осевого вращения шаров. Энергия Е каждого из них есть исключительно энергия поступательного движения с фактической скоростью Ve, определенной выше, так что Е = ½MVe². Осевые вращения шара в любом из двух направлений лишь кажущиеся; они не имеют какой бы то ни было реальной основы и не требуют никакого механического усилия. Только в том случае, когда действует независимая внешняя сила, чтобы вращать ротативное тело на его оси, эта энергия проявит себя.
В этой связи следует указать, что при истинном осевом вращении неподвижно закрепленной и однородной массы все симметрично расположенные частицы вносят равный вклад в количество движения, что в данном случае не имеет места. Тот факт, что не существует даже малейшей тенденции к такому движению, может быть без труда доказан.
Ил. 6. Чертеж, представляющий шар с массой М и радиусом r, вращающийся вокруг центра О, служит для теоретического исследования движения Луны
Для этого я сошлюсь на иллюстрацию 6, где представлен шар М с радиусом r и с центром С, находящимся на расстоянии R от оси О; шар разделен на две равные части тангенциальной плоскостью pp, как показано, при этом нижняя часть сферы заштрихована для распознавания. Кинетическая энергия шара, при условии, что он совершает n оборотов в секунду вокруг О, определяется согласно первому варианту выражения как E = ½MVe² = ½M(2πRgn)², где M — масса, a Rg — радиус вращательного движения. Но, как говорилось в пояснении к иллюстрации 4, мы также имеем выражение Е = ½MV² + ½Ieω², где V = 2πRn есть скорость центра тяжести С, а Ie — момент инерции шара, находящегося в окрестности параллельной оси, проходящей через С и равный 2/5Мi², так что Е = ½М(2πRn)² + 1/5Мr²(2πn)². Ни одно из этих двух выражений для E не характеризует фактическое состояние тела, но первое, конечно, предпочтительнее, так как передает в сущности идею единого движения вместо двух, из которых одно не имеет основы для существования. Я берусь прежде всего доказать, что не существует вращающего момента, или вращательного усилия, вокруг центра С, и что кинетическая энергия воображаемого осевого вращения шара в математическом смысле равна нулю. Это приводит к необходимости считать две половины, разделенные тангенциальной плоскостью pp, полностью независимыми одна от другой. Пусть с1 и с2 будут их центрами тяжести, тогда Сc1 = Сc2 = 3/8r. Чтобы определить кинетическую энергию полусфер, мы должны найти их радиусы движения по окружности, что можно сделать, определив моменты инерции Ic1 и Iс2 в окрестности параллельной оси, проходящей через с1 и с2. Можно избежать сложных вычислений, если помнить, что момент инерции любой из полусфер в окрестности оси, проходящей через С, выражается формулой Ic = ½ × 2/5Mr² = 1/5Mr², и поскольку М = 2 т, то Ic = 2/5mr². Это можно выразить через моменты Ic1 и Iс2, а именно: Ic = Iс1 + m(3/8r)² = Ic2 + m(3/8r)². Следовательно, Ic1 = Ic2 = Ic — m(3/8r)² = 2/5mr² — 9/64mr² = 83/320mr². Следуя этому же правилу, можно найти моменты инерции полусфер в окрестности оси, проходящей через центр движения О.
Определяя моменты для верхних и нижних половин шара, соответственно, IO1 и IO2, мы получим IO1 = m(R + 3/8r)² + Iс1 = m(R + 3/8r)² + 83/320mr² и IO2 = m(R — 3/8r)² + Iс2 = m(R — 3/8r)² + 83/320mr²
Таким образом, для верхней половины сферы радиус движения по окружности
и для нижней половины
Они представляют собой расстояния от центра О, вокруг которых массы полусфер могут концентрироваться, и тогда алгебраическая сумма их энергий, которые полностью относятся к поступательному движению, а энергии осевого вращения при этом равны нулю, будет равна совокупной кинетической энергии шара в целом. Значение этого факта поможет понять ссылка на иллюстрацию 7, в которой две массы, уплотненные до точек, представлены закрепленными на невесомых нитях длиной Rg1 и Rg2, которые специально показаны смещенными, но их следует представлять совпадающими. Можно без труда увидеть, что если обе нити отрезать, в тот же момент массы отлетят по касательной к своим орбитам, при этом угловое движение станет прямолинейным, и не произойдет никакого трансформирования энергии. Теперь давайте узнаем, что произойдет, если две массы жестко соединить, а связующее звено между ними считать невесомым. В этом случае мы придем к фактическому сбою в обсуждаемом вопросе. Очевидно, что пока происходит турбулентное движение и обе массы имеют абсолютно одну и ту же угловую скорость, связующее звено не будет оказывать какого-либо влияния, вокруг общего центра тяжести масс нет ни малейшего поворотного усилия или тенденции к выравниванию энергии между ними. В тот момент, когда нити оборвутся и шары будут отброшены, они начнут вращаться, но, как указывалось выше, это движение ни прибавит, ни убавит аккумулированной энергии. Однако вращение обусловлено не исключительным свойством углового движения, а тем обстоятельством, что тангенциальные скорости отброшенных масс, или частей тела, различны.