дна из таких машин была представлена на лекции в Нью-Йоркской академии наук в 1897 году.
Ил. 4. Генератор Теслы генерирует незатухающие колебания
Иллюстрация 4 демонстрирует тип трансформатора, во всех отношениях идентичный тому, что был представлен в уже упоминавшемся майском номере «Electrical Experimenter» за 1919 год. Он состоит из тех же самых основных деталей, размещенных аналогичным образом, но он специально сконструирован для источников питания от 220 до 500 вольт и выше. Настройка осуществляется путем установки контактной пружины и перемещения железного сердечника вверх и вниз внутри индукционной катушки с помощью двух регулировочных винтов. Для предотвращения повреждений от короткого замыкания в линию питания включены плавкие предохранители. Во время фотосъемки прибор работал, генерируя незатухающие колебания, от осветительной сети в 220 вольт.
Ил. 5. Более поздняя модификация трансформатора Теслы
Иллюстрация 5 представляет более позднюю модификацию трансформатора, предназначавшегося главным образом для замены катушек Румкорфа. В этом случае применяется первичная обмотка со значительно большим числом витков, а вторичная находится в непосредственной близости от нее. Токи, образующиеся в последней, напряжением от 10 000 до 30 000 вольт используются обычно для зарядки конденсаторов и питания автономной высокочастотной катушки. Механизм управления устроен несколько иначе, но обе детали — и сердечник, и контактная пружина — регулируются, как и прежде.
Ил. 6. Малый генератор для получения озона
Иллюстрация 6 демонстрирует небольшой прибор из серии такого рода устройств, предназначенный, в частности, для производства озона или дезинфекции. Для своих габаритов он в высшей степени эффективен и может быть подключен к сети напряжением в 110 или 220 вольт постоянного или переменного тока, первое предпочтительнее.
Ил. 7. Большой трансформатор Теслы
На иллюстрации 7 показан более крупный трансформатор этой серии. Конструкция и компоновка составных частей остались прежними, но в корпусе имеются два конденсатора, один из которых входит в цепь катушки, как и в предыдущих моделях, в то время как другой подключен параллельно к первичной обмотке. Таким образом, в последней образуются токи большой силы и, следовательно, усиливаются эффекты во вторичной цепи. Введение дополнительного резонансного контура дает также другие преимущества, но настройка оказывается более трудным делом, и поэтому желательно использовать прибор такого рода для получения токов заданной постоянной частоты.
Ил. 8. Преобразователь с роторным прерывателем, используемый для экспериментов в области беспроводной передачи
Иллюстрация 8 показывает трансформатор с роторным прерывателем. В корпусе имеются два конденсатора одинаковой емкости, которые могут соединяться последовательно или параллельно. Заряжающие индуктивности имеют форму двух длинных бобин, на которых помещаются два вывода вторичного контура. Для приведения в действие специально сконструированного прерывателя применяется небольшой мотор постоянного тока, число оборотов которого может варьироваться в широких пределах. По другим характеристикам этот генератор подобен модели, представленной на иллюстрации 3, и из вышесказанного легко можно понять, как он работает. Этот трансформатор использовался мной в опытах по беспроводной передаче и часто для освещения лаборатории моими вакуумными трубками, а также экспонировался во время упомянутой выше лекции, которую я читал перед Нью-Йоркской академией наук.
Ил. 9. Трансформатор и ртутный прерыватель
Теперь перейдем к машинам второго класса, одной из которых является преобразователь переменного тока, показанный на иллюстрации 9. В его схему входят конденсатор и заряжающая индукционная катушка, которые помещены в одну камеру, трансформатор и ртутный прерыватель. Конструкция последнего была впервые описана в моем патенте № 609251 от 16 августа 1898 года. Он состоит из приводимого в движение электродвигателем полого барабана с небольшим количеством ртути внутри него, которая отбрасывается центробежной силой на стенки полости и увлекает за собой контактный диск, периодически замыкающий и размыкающий конденсаторную цепь. С помощью регулировочных винтов над барабаном можно по желанию менять глубину погружения лопастей, следовательно, продолжительность каждого контакта, и таким образом регулировать характеристики прерывателя. Этот вид прерывателя удовлетворял всем требованиям, так как исправно работал с токами силой от 20 до 25 ампер. Число прерываний в секунду составляло обычно от 500 до 1000, но возможна и более высокая частота. Всё устройство имеет габариты 10 дюймов × 8 дюймов × 10 дюймов, и выходная мощность составляет приблизительно ½ кВт.
Ил. 10. Большой преобразователь Теслы с герметичной камерой и ртутным контроллером
В описанном здесь преобразователе прерыватель подвержен воздействию атмосферы и происходит постепенное окисление ртути. От этого недостатка избавлен прибор, представленный на иллюстрации 10. Он имеет перфорированный металлический корпус, внутри которого размещаются конденсатор и заряжающая индукционная катушка, а над ним находятся мотор прерывателя и трансформатор. Тип ртутного прерывателя, который будет описан, действует по принципу реактивной струи, которая, пульсируя, создает контакт с вращающимся диском внутри барабана. Неподвижные детали закреплены внутри камеры на штанге, проходящей по всей длине полого барабана, и ртутный затвор используется для герметичного закрытия камеры, внутри которой находится прерыватель. Прохождение тока внутрь барабана осуществляется посредством двух скользящих колец, расположенных сверху, которые соединены последовательно с конденсатором и первичной обмоткой. Исключение кислорода является бесспорным усовершенствованием, которое устраняет окисление металла и связанные с этим трудности и постоянно поддерживает рабочий режим.
Ил. 11. Генератор Теслы с герметично закрытым ртутным прерывателем, сконструированным для генераторов низкого напряжения
На иллюстрации 11 показан генератор с герметически закрытым ртутным прерывателем. В этом устройстве неподвижные части прерывателя внутри барабана укреплены на трубке, сквозь которую пропущен изолированный провод, присоединенный к одному выводу выключателя, в то время как другой вывод подключен к резервуару. Это делало ненужными скользящие кольца и упрощало конструкцию. Прибор сконструирован для генераторов с низким напряжением и частотой, что требует сравнительно небольшого тока в первичной обмотке, использовался для возбуждения резонансных контуров.
Ил. 12. Усовершенствованный трансформатор Теслы с герметичным ртутным прерывателем
Иллюстрация 12 представляет усовершенствованную модель генератора колебаний, описание которой дано к иллюстрации 10. В этой модели была ликвидирована несущая штанга внутри полого барабана, и устройство, нагнетающее ртуть, удерживается на месте под действием силы тяжести. Более подробное описание будет приведено в связи с другой иллюстрацией. И емкость конденсатора, и количество витков первичного контура можно менять, чтобы иметь возможность генерировать колебания в нескольких частотных режимах.
Ил. 13. Другой вид преобразователя переменного тока с герметично запаянным ртутным прерывателем
Ил. 14. Схема и компоновка деталей модели, представленной на иллюстрации 13
Иллюстрация 13 являет собой фотографическое изображение еще одного типа генератора переменного тока с герметически закрытым ртутным прерывателем, а иллюстрация 14 представляет собой схему цепей и компоновку частей, которые воспроизведены из моего патента № 609245 от 16 августа 1898 года, где описывается именно это устройство. Конденсатор, индукционная катушка, трансформатор и прерыватель размещены, как и прежде, но последний имеет конструктивные отличия, что станет ясным после рассмотрения этой схемы. Полый барабан а соединен с осью с, которая смонтирована с вертикальным подшипником и проходит через постоянный электромагнит возбуждения d двигателя. Внутри барабана на подшипниках качения укреплено тело h из магнитного вещества, защищенного колпаком b в центре пластинчатого железного кольца, с полюсными наконечниками оо, на которых имеются подключенные к току спирали p. Кольцо поддерживается четырьмя стойками, и в намагниченном состоянии оно удерживает тело h в одном положении во время вращения барабана. Последний изготовлен из стали, а колпак лучше сделать из нейзильбера, черненного кислотой или никелированного. Тело h имеет короткую трубку k, согнутую, как показано, для улавливания жидкости в процессе ее вращения и выбрасывания на зубья диска, прикрепленного к барабану. Диск имеет изоляцию, а контакт между ним и внешним контуром осуществляется посредством ртутной воронки. При быстром вращении барабана струя жидкого металла выбрасывается на диск, замыкая и размыкая таким способом контакт приблизительно 1 000 раз в секунду. Прибор работает бесшумно и благодаря отсутствию окисляющей среды остается неизменно чистым и в отличном состоянии. Возможно тем не менее добиться гораздо большего числа колебаний в секунду для того, чтобы сделать токи пригодными для беспроводной телефонии, и других подобных целей.
Ил. 15 и 16. Преобразователь Теслы с герметично закрытым ртутным прерывателем, работа которого регулируется силой тяжести; узлы электродвигателя и прерывателя
Модифицированный тип генератора колебаний представлен на иллюстрациях 15 и 16, первая является фотографическим изображением, а вторая — схемой, показывающей компоновку внутренних частей регулятора. В данном случае вал b, несущий пустотелый контейнер а, опираясь на подшипники качения, соединен со шпинделем j, к которому прикреплен груз