– Профессор Хокинг, что вы думаете о спектакле?
Стивен ответил:
– Спектакль был не так уж хорош, не правда ли?
Директор был удивлен таким ответом. Но затем подумал и сказал:
– Да. Я согласен.
Разглагольствования инженера из Южной Африки нельзя было назвать ни плохими, ни хорошими. Это была просто его точка зрения, правда, довольно многословная. Она привлекла внимание Стивена. На этот счет у него было свое мнение, и он не собирался держать его при себе. Он спросил у инженера:
– А как насчет чернокожих?
– Их можно не принимать во внимание, – сказал инженер.
Это был обычный ответ для начала 1960-х годов.
– Почему их можно не принимать во внимание? – спросил Стивен.
– Потому что они не в состоянии позаботиться о себе.
Инженер заговорил об апартеиде. Он существует, и он необходим.
Стивен не спорил с ним. Он продолжал задавать наводящие вопросы инженеру, противопоставляя свое мнение точке зрения собеседника, но при этом не спорил с ним в открытую, а, как Сократ, пытался сделать так, чтобы собеседник сам увидел всю правду без прикрас.
В начале разговора инженер полностью был убежден в своей правоте. До этого он никогда не подвергал сомнению сложившееся положение вещей. А Стивен сумел превратить их застольную беседу в настоящее исследование убеждений собеседника, исследование, которым тот сам наверняка никогда раньше не занимался. В конце разговора инженер был откровенно смущен. Теперь, когда его заставили понять, на чем зиждется его убеждение в правоте апартеида, и поставили под сомнение его понятия о природе черного человека, он стал сам себе задавать «неудобные» вопросы.
Я знавал одного профессора физики, который советовал: «Если вы любите задавать вопросы и искать на них ответы, становитесь физиком. Если вам нравится изучать ответы и находить им применение, становитесь инженером». Это, конечно, слишком широкое обобщение, но оно иллюстрирует разницу в философском подходе и психологическом аспекте, которые свойственны этим двум областям знания. Что вам более по душе – заучивать то, что уже известно, и применять полученные знания на практике или задавать вопросы и познавать неведомое? Стивен не был бы Стивеном, если бы он не побудил инженера начать задавать себе вопросы. Ибо только подвергая сомнениям свои убеждения и представления других, можно совершить важное открытие – не только в жизни, но и в физике.
Инженер смотрел на свою страну так, как большинство людей смотрят на ночное небо: они видят совокупность белых светящихся точек в обширном и безликом море черноты. Своими вопросами Стивен заставил собеседника увидеть на небе не просто точки. То же самое Стивен обычно проделывал с коллегами-физиками. Они восхищались звездами и галактиками, а Стивена больше интересовало промежуточное пространство. Откуда оно взялось? Как это все начиналось? Пытаясь понять смысл нашего существования, Стивен считал, что прежде всего нужно ответить на эти вопросы. Когда Стивен начинал работу над своей диссертацией, мало кто задавался подобными вопросами.
Это было время, когда общая теория относительности и космология не были в большом почете. Отсутствие интереса у физиков к проблеме возникновения Вселенной можно было понять, так как физика – эмпирическая наука, а происхождение Вселенной относится к явлениям, которые невозможно наблюдать непосредственно. Да, свету требуется определенное время, чтобы долететь до нас от удаленных галактик; и, наблюдая этот свет, мы действительно можем заглянуть в прошлое. Но все-таки не настолько далекое прошлое! И никто в начале шестидесятых годов не имел понятия, как можно косвенным образом проверить гипотезу о происхождении Вселенной. В результате такого подхода физики склонны были рассматривать космологию как псевдонауку, как игровую площадку для математических игр за пределами его величества эксперимента. Ситуация начала меняться после того, как в 1964 году было случайно открыто слабое свечение, оставшееся после Большого Взрыва – космическое микроволновое фоновое излучение (реликтовое излучение). Когда Стивен начинал учиться в Кембридже, до открытия реликтового излучения оставалось еще более года.
Другой важный момент заключался в том, что никто толком тогда не понимал, что, собственно, предсказывает теория Эйнштейна. Как и любая физическая теория, теория Эйнштейна есть набор математических уравнений и методов действий с входящими в них неизвестными. Для выяснения того, что теория может сказать о той или иной конкретной физической системе, нужно использовать набор математических уравнений, которые подходят к этой системе, и решить их или, по крайней мере, найти их приблизительное решение. В большинстве случаев уравнения Эйнштейна решить очень трудно, поэтому в наши дни мы изучаем их возможные решения с помощью суперкомпьютеров; но в середине прошлого века мощности компьютеров для этого явно не хватало.
Из-за подобных трудностей тогда, когда Стивен приехал в Кембридж, приверженцами общей теории относительности и космологии оставались в основном математики, чьи работы – в частности, создаваемые ими модели Вселенной – были весьма далеки от реальности. Они были «при деле», но при этом на их статьи никто не обращал внимания. Низкий уровень этих работ стал причиной письма, которое физик Ричард Фейнман из Калифорнийского технологического института написал в 1962 году своей жене из Варшавы, где проходила конференция по гравитации: «Так как в этой области физики напрочь отсутствуют экспериментальные исследования, в ней нет никакого движения… Здесь масса остолопов, а это отрицательно сказывается на моем давлении: говорится и серьезно обсуждается такая чушь, что мне поневоле приходится вступать в споры…»
Большинство физиков сходились во мнении, что вопросы о происхождении Вселенной рассматривать бесполезно, ибо они заводят в тупик; но именно эти вопросы и были милы сердцу Стивена Хокинга. Существующий в этой области застой не обескураживал, а наоборот, вдохновлял Стивена: с его точки зрения, это «научное поле» было не засохшим, а созревшим, и именно ему предстояло собрать с него урожай.
Людям, далеким от науки, может показаться, что физики-теоретики в основном занимаются тем, что решают разные задачи. Но гораздо важнее решения самой задачи ее постановка, потому что вопросы, которые вы задаете, уже дают вам направление, в котором следует искать ответ. Вопросы и отражают, и определяют ваш взгляд на мир. Стивен обладал завидным умением отвергать то, что впоследствии действительно оказывалось неважным, и быстро определять суть проблемы. Он интуитивно ставил верные вопросы и подвергал сомнению неоднозначные предположения других. Из-за этого Стивен прослыл в научной среде фрондером. Эта роль «прилипла» к нему естественным образом: он игнорировал общепринятый здравый смысл точно так же, как с легкостью нарушал скоростной режим и пренебрегал советами докторов. Он водил машину крайне безрассудно, и его физические рассуждения тоже были необузданными. Но – не безрассудными. Стивен всегда знал, даже еще будучи аспирантом, чего он хочет добиться в физике и почему.
Физика считается полем действия рассудка и логики. В большой степени это так и есть. Но для того, чтобы рассуждать логически, надо прежде всего иметь рамки мышления, которые определяют те предположения, которые вы делаете; выделяют концепции, которые вы будете использовать; ставят вопросы, на которые вы будете искать ответы. Люди часто принимают на веру рамки мышления, унаследованные ими от других или почерпнутые из истории или собственного прошлого; при этом обычно никогда не подвергают их сомнению и не исследуют их должным образом.
«Как это все началось?» – животрепещущий для Стивена вопрос. В течение двух тысячелетий все придерживались того мнения, что Вселенная либо всегда существовала в неизменном виде, либо была сотворена в некий момент – например, как это описано в Библии – и с тех пор оставалась относительно неизменной[3]. Философы, от Аристотеля до Канта, а также ученые, включая даже Исаака Ньютона, верили именно в это.
Ньютону следовало бы лучше вникнуть в суть проблемы. Как может семейство галактик и звезд поддерживать неизменную конфигурацию, если каждая из них силами гравитации притягивает к себе все остальные? Не должны ли все эти объекты слиться с течением времени в единое целое? И поскольку с момента начала всего сущего прошло много времени, не должно ли все вещество уже успеть соединиться в огромный плотный шар? Ньютон знал об этой проблеме, но не считал ее заслуживающей серьезного внимания. Он говорил себе так: если Вселенная бесконечно большая, то скучивания вещества в ней не произойдет. Но это не так. После Ньютона некоторые ученые пытались модифицировать его теорию, чтобы наделить гравитацию отталкивающими свойствами на больших расстояниях: они применяли небольшую математическую хитрость, в результате которой планеты по-прежнему вращаются по своим орбитам, а на больших расстояниях Вселенная удерживается от коллапса. Но попытки такой модификации теории гравитации не увенчались успехом. Хотя в этой «игре» участвовал сам Эйнштейн: он добавил дополнительный «антигравитационный» член в уравнения общей теории относительности и назвал его космологической постоянной. Эта космологическая постоянная должна была поддерживать силу отталкивания, необходимую для того, чтобы удержать космос от схлопывания[4].
Осознание того, что все эти знаменитые философы и ученые заблуждались и что Вселенная на самом деле меняется, расширяется и эволюционирует, пришло только в XX столетии. Это было одно из самых замечательных открытий века. Свершилось оно благодаря американскому астроному Эдвину Хабблу, который преподавал испанский язык и тренировал баскетбольную команду в школе города Нью-Олбани (США, штат Индиана), пока не решил сделать научную карьеру в Университете Чикаго, где и защитил диссертацию доктора философских наук.