сверх того предполагать «реальность» и наделять ее какими-то качествами.
Взгляды Бора во многом опирались на важное обстоятельство, с которым мы мельком уже сталкивались. «Наблюдение» – без сомнения, плохой термин. Он в значительной мере ассоциируется с пассивностью: зритель, наблюдающий футбольный матч, не влияет на то, как этот матч развивается, – совсем никак, если сидит перед телевизором, и в небольшой и отчасти спорной степени, если находится на стадионе (где воздействие теоретически ограничено криками).
Но в квантовом мире наблюдение за системой – это всегда вмешательство в систему (с «квантовым футболом» в этом смысле возникли бы большие проблемы). В качестве иллюстрации представьте себе, что вы желаете на ощупь убедиться в наличии каких-то неровностей на очень деликатной поверхности; сама эта процедура может изменить подробности – те самые, которые и были предметом интереса. А в отношении квантовых явлений посмотреть тоже означает «пощупать» – в том числе и светом. Любое наблюдение или измерение сопровождается там вмешательством. Слово «измерение» тоже не самое удачное – по выражению Белла, худшее в списке плохих слов из хороших книг. По историческим причинам тем не менее все его в основном и используют, и я тоже буду так делать, не каждый раз прибавляя, что измерение требует взаимодействия с системой, а потому представляет собой вмешательство в нее.
Одна и та же квантовая система по-разному откликается на измерения, выполняемые с помощью различных приборов. Это делает приборы особенно важными: с точки зрения Бора они необходимы ни много ни мало для придания смысла всей квантовой механике. Измерение выбранной физической величины (например, положения в пространстве или энергии) заставляет квантовую систему определиться с тем, каким окажется значение этой величины. Повторение того же измерения со строго идентичной системой вполне может дать другое значение – так работает индетерминизм, который мы обсуждали в предыдущей главе и который еще не раз нам встретится. Чтобы избежать при этом логического круга, пришлось наделить измерительные приборы особым статусом: по Бору, они не подчиняются квантовой механике. Такое свойство приписывается им декларативно, несмотря на то что каждый прибор состоит из электронов и всего остального (атомных ядер, образованных из протонов и нейтронов), что, разумеется, ведет себя квантовым образом.
А поскольку, согласно Бору, говорить о квантовых объектах «самих по себе» (безотносительно к измерению) достаточно бессмысленно, дело оборачивается таким образом, что для придания смысла квантовому миру необходим отдельный и отделенный от него классический мир. Квантовая реальность, определенно отличающаяся от классической, оказывалась доступной только через результаты измерения, сильно дальше которых предлагалось и не заглядывать.
Эйнштейн, однако, подозревал наличие более глубокой – и при этом «более обычной» – реальности. В частности, он был склонен думать, что невозможность одновременно обладать «враждебными» свойствами не идет от природы вещей, а является лишь чертой квантовой теории в том виде, в котором она была придумана на его глазах; и что эта теория просто недопридумана до конца: она неполная и не ухватывает какие-то более глубокие и более «детальные» свойства мира, где никаких неопределенностей уже нет. Как уже было сказано, эти свойства, существующие где-то в глубине реальности, получили название скрытых параметров.
Заодно, надеялся Эйнштейн, в «более глубокой реальности» нет и индетерминизма, а случайность появляется в квантовой механике только из-за того, что мы не все знаем. Не знаем каких-то неведомых подробностей про электрон и про радиоактивное атомное ядро, вообще про все. Возможно, эти подробности очень громоздкие и нам в конце концов будет удобнее остаться с вероятностным описанием – но как бы то ни было, случайность эта не «истинная и неделимая», ни к чему не сводимая, а просто является результатом действия трудно учитываемых факторов (как при подбрасывании монеты на футбольном поле, только много убедительнее).
Так полагал Эйнштейн, но прислушивались к нему не многие. Предлагаемые задним числом ответы «почему» всегда грешат предвзятостью. Факторов было несколько: и несомненный вычислительный успех квантовой механики уже в версии Гайзенберга, на волне которого предлагалось «раз и навсегда» отказаться от старых, до-квантовых представлений о реальности; и харизма Бора, который обладал незаурядной способностью воздействовать (в том числе давить) на собеседников, произнося при этом с трудом понимаемые, неясно сформулированные и неоднозначно интерпретируемые сентенции (запутанность своей словесной аргументации он возвел едва ли не в принцип); и, возможно, обретшая после Первой мировой войны особое влияние философия позитивизма{30}.
По итогам дебатов о природе квантового, растянувшихся на несколько лет (с кульминацией в 1927–1930 гг.), победу с заметным преимуществом, по общему мнению, одержал лагерь, возглавляемый Бором. Правда, остались неурегулированными пара ключевых вопросов, которые Бор в известной степени «заболтал», но сообщество по этому поводу не переживало (в частности, не получило определения само понятие измерения – несмотря на его ключевую роль в предлагаемой схеме). На стороне Бора было то неоспоримое обстоятельство, что квантовая механика работала.
Однако в 1935 г. Эйнштейн в соавторстве с двумя молодыми коллегами придумал новую, до тех пор невиданную конструкцию, чтобы с ее помощью отстоять точку зрения, что квантовая механика, пусть сама по себе и ничем не неправильная, все же представляет собой неполную теорию: за ее рамками остаются некоторые подробности устройства мира. Работа Эйнштейна, Подольского и Розена произвела немалое впечатление на Шрёдингера (который, надо сказать, никогда не сближался в своих воззрениях с Гайзенбергом и Бором, хотя и отдавал должное веской аргументации первого и полемическому таланту второго). Шрёдингер же придумал и название для явления, которое изобрели три автора, и заодно высказался в том духе, что оно представляет собой главное отличительное свойство квантовой механики, радикально отделяющее ее от классической. Он назвал его Verschränkung по-немецки и entanglement по-английски. Русский термин «запутанность», возможно, стоило бы заменить на «зацепленность», но дело уже прошлое.
Правда, кроме Шрёдингера запутанностью впечатлились не слишком многие. Статья Эйнштейна, Подольского и Розена была написана сложно. По итогам совместной работы текст писал второй автор, и он расставил акценты не совсем так, как хотел бы первый автор (который не проконтролировал результат), из-за чего основной тезис оказался не столь прост для усвоения. Кроме того, тот же Подольский, видимо в предвкушении скорого выхода статьи, организовал «утечку» в массовое (а не научное) издание, The New York Times. Газетная публикация о том, что Эйнштейн критикует квантовую теорию, вызвала среди непрофессионалов шумиху, которая вполне могла отвратить профессионалов (а с Подольским Эйнштейн больше не разговаривал).
Не слишком ясно выраженные идеи, ажиотаж в газетах, поверхностное впечатление, что это «еще одна» попытка Эйнштейна поймать квантовую механику на противоречии, чего, как все уже видели, сделать не удается, – все это не способствовало привлечению серьезного внимания к статье трех авторов. Бор опубликовал в ответ на нее комментарии, граничащие со словесной эквилибристикой (их неудовлетворительность он и сам впоследствии признавал), и о статье в общем и целом забыли. Но в науке написанное остается. После небольшого отступления мы, вооружившись необходимыми средствами, увидим, что не прошло и полувека, как запутанность, изобретенная в полемике о неполноте квантовой механики, получила развитие, которого ни одна из вовлеченных в дискуссию сторон не могла и предвидеть.
7Что от вращения
Открытая Эйнштейном, замеченная и названная Шрёдингером запутанность довольно долго вела малособытийное существование вдали от центральных тем квантовой теории. В начале 1950-х гг. – когда в ведении квантовой науки оказалась ядерная энергия, из-за чего много изменилось и в мире, и в этой науке, и в их взаимоотношениях, – Бом придал запутанности более выразительный вид, использовав для этого уникальное квантовое свойство – спин. Ее, впрочем, некоторое время продолжали не замечать и в этом новом наряде, но уж теперь, когда запутанность набрала настоящую популярность, запутанными неизменно оказываются спины.
Чтобы двигаться вперед, нам нужен спин! Это свойство как никакое другое показывает, что наш мир – квантовый в своей основе. Спин не имеет прямого классического аналога, но существенно влияет на судьбу всех элементарных объектов; он фигурирует не только в самом популярном варианте запутанности, но и во многих иных принципиально важных явлениях. Он, в частности, отвечает за точный вид таблицы Менделеева. Откладывать знакомство со спином далее невозможно.
Что такое спин для нашего доброго друга – электрона? Если угодно, это его «второе неотъемлемое свойство». С первым неотъемлемым мы уже многократно встречались, и я его даже не каждый раз упоминаю: это электрический заряд. Заряд позволяет электрону взаимодействовать с электрическим полем (например, получать от него энергию движения – что, собственно, происходило в телевизорах XX в. и что продолжает использоваться в ускорителях). А свое второе неотъемлемое свойство электрон проявляет во взаимодействии с магнитным полем, потому что это свойство делает электрон похожим на магнит неопределенно малого размера. Магнитных свойств в отсутствие электрического заряда у электрона не было бы, но одного заряда недостаточно. Нужно, кроме того, что-то вроде вращения – настолько, насколько это возможно в квантовом мире.
А там, как мы видели в главе 4, вращение теряет наглядность. Из-за вражды невозможно указать ось вращения, и из трех величин, которые нужны для привычного описания этого явления, определены только две, причем и они могут принимать только дискретные значения. Мы называли их