Положениями остальных электронов при этом никто не интересуется: они могут быть какими угодно, но если в тройке точек «подвела» первая – оказалась слишком далеко от центра коллапса, – то вклад всей тройки в волновую функцию делается ничтожно малым. Таким образом можно «отъесть» от волновой функции очень значительный кусок. Конечно, все то же самое применимо и к коллапсу за счет второго и всех остальных электронов, сколько бы их ни было. При наличии трех электронов, кстати, самопроизвольного коллапса надо ждать в среднем уже не 100, а всего лишь 33 млн лет – наблюдение, которое подсказывает, что же помогает кошке Шрёдингера не зависать в комбинации состояний «живая» и «мертвая» ни на миллионы лет, ни даже на микросекунду.
Злоключения этого животного, как мы помним, начинаются с электрона, влетающего в прибор Штерна – Герлаха. Если это электрон в состоянии «спин вверх», то ручка прибора переходит в положение «вверх» и распыляется яд, а если в состоянии «спин вниз», то ручка просто занимает положение «вниз» без драматических последствий. И конечно, когда в прибор влетает электрон, состояние которого выражается комбинацией «спин вверх плюс спин вниз», прибор запутывается с электроном, как ему и велит уравнение Шрёдингера. А это значит, что запутываются все электроны, из которых состоит прибор: в их волновой функции появляются две части, одна из которых – отклик на спин вверх и отвечает положению ручки вверх, а другая – отклик на спин вниз и соответствует положению ручки вниз.
Коллапс волновой функции для каждого электрона случается в среднем раз в 100 млн лет, но это в среднем, а в приборе электронов так много, что какой-то один из них испытает коллапс не через 100 млн лет, а уже через 10 наносекунд. Общая волновая функция всех электронов тогда станет ничтожно малой для всех конфигураций, в которых этот электрон находится вне пятна диаметром 100 нм.
Но два положения ручки разделены «большим», т. е. макроскопическим, расстоянием – скажем, 1 см. Да и миллиметр подойдет; подойдет вообще любое расстояние, которое мы можем непосредственно зафиксировать, ведь в подобной фиксации и состоит весь смысл измерительного прибора. Такое расстояние несравненно больше тех 100 нм: обе ветви волновой функции просто не поместятся в одно пятно указанного размера, какая-то из них непременно станет пренебрежимо малой (чуть ниже я вернусь к тому, почему не окажутся «съеденными» обе ветви). В результате от всей волновой функции прибора останется только та часть, которая отвечает вполне определенному положению ручки – скажем, вверх.
Благодаря запутанности пространственное сужение волновой функции, вызванное каким-то одним электроном, заставляет сколлапсировать волновую функцию всего прибора. Самопроизвольный коллапс происходит без промедления с любым объектом, состоящим из по-настоящему большого числа элементарных квантовых объектов; для этого не требуется наделять измерительные приборы никакими запрещенными свойствами. Если до коллапса имелось не две, а любое число возможностей (скажем, различных значений энергии, если измеряется энергия), то все равно только какая-то одна из них останется в волновой функции заметно отличной от нуля.
Коллапс не щадит и тот электрон, который первоначально влетел в прибор в состоянии «спин вверх плюс спин вниз». Он ведь запутался с прибором в состояние «(спин вверх, ручка вверх) плюс (спин вниз, ручка вниз)». Неважно, что коллапс вызван электроном из прибора – для влетевшего электрона все равно остается только какая-то одна возможность: скажем, «спин вверх», если прибор сколлапсировал к варианту «ручка вверх». Разумеется, если бы зачинщик запутывания и дальше пребывал в одиночестве, его собственного коллапса едва ли удалось бы дождаться.
Судьба кошки точно таким же образом оказывается полностью определенной – быть может, печальной, но во всяком случае однозначной. Спонтанный коллапс гарантированно избавляет кошку не от смерти, но от участия в неясной, с точки зрения кошачьей природы, комбинации «(спин вверх, ручка вверх, яд, мертва) плюс (спин вниз, ручка вниз, яда нет, жива)». Остается только одна ветвь из запутанного состояния всех участников взаимодействия: электрона, прибора, адского устройства, кошки, хозяйки, мамы хозяйки и т. д.
Есть, правда, вещи даже важнее кошек. Устройство окружающего нас мира зависит от стабильности атомов и одинаковости атомов одного вида. Но не наносит ли сужение волновой функции вреда этим деликатным образованиям? Мы не стали бы сильно переживать, если бы какой-то атом «где-то там» тем или иным образом портился из-за спонтанного коллапса раз в несколько миллионов лет. Но в том-то и дело, что в телах вокруг нас и в нас самих атомов и электронов предостаточно, и коллапс должен случаться очень часто. Следует ли приглядеться к вещам повнимательнее, чтобы заметить последствия этих событий для атомов, из которых мы состоим?
Не следует. Атомы вообще не портятся спонтанным коллапсом, просто потому что волновая функция электронов в атомах уже узкая, причем намного более узкая, чем ее вынуждает стать спонтанный коллапс. Как мы уже говорили, диаметр 100 нм примерно в 1000 раз превосходит характерный размер атома, а это значит, что у волновой функции электронов в атоме просто нет шансов выскочить за пределы пятна, заданного таким сужением. А внутри пятна волновая функция практически не меняется, вот атомы ничего и не замечают.
Остается еще поинтересоваться, будет ли в результате измерений, при таком их механизме, воспроизводиться правило Борна. Выяснение этого попутно разрешает еще одно беспокойство: если центр коллапса определяется случайно, то «пятно» может вообще промазать – коллапс произойдет так, что не реализуется ни одно из возможных положений ручки. Такая картина не уступала бы по странности кошке, запутавшейся между жизнью и смертью.
Этого не происходит из-за того, каким образом выбирается центр коллапса. А выбирается он в соответствии с правилом Борна, только никак не связанным ни с каким измерительным прибором. Правило Борна становится математическим рецептом, который по волновой функции позволяет определить вероятность того, что центром коллапса станет та или иная точка{88}. В результате оказывается, что коллапс случается там, где мы бы скорее всего и обнаружили электрон, если бы провели измерение, т. е. в соответствии с обычным правилом Борна. В частности, электрон из числа находящихся в ручке прибора сколлапсирует в область, отвечающую одному из ожидаемых положений ручки.
Так и получается, что правило Борна при измерении выполнено без «магии измерительного прибора»: борновские вероятности всего лишь участвуют в выборе центра коллапса, а сверх того никаких специальных предположений делать не нужно. А заодно переход от малых систем к большим оказался плавным и напрямую обусловленным количеством индивидуальных квантовых объектов. Если электрон, выступающий зачинщиком запутывания, взаимодействует с системой, состоящей из малого числа квантовых объектов, то возникающей запутанной волновой функции (почти) ничто не мешает оставаться запутанной: самопроизвольный коллапс происходит крайне редко. Но как только одна из систем («прибор») оказывается макроскопической, склонность к коллапсу радикально усиливается. Что касается наших обычных приборов, мы просто не успеваем увидеть их, пока они находятся в комбинации состояний – пока ни один из уймы их электронов еще не сколлапсировал.
Гипотеза спонтанного коллапса имеет интересное развитие – наблюдение Белла о возможных «локальных существователях», т. е. обособленных объектах, населяющих наше физическое пространство. Мы помним про «высокомерие» квантовой механики в отношении пространства-времени: волновая функция имеет дело с конфигурациями всех элементарных квантовых объектов в системе и не предоставляет средств, чтобы изучать происходящее в какой-то одной точке. Но в гипотезе спонтанного коллапса уже используются отдельные точки в пространстве, «включающиеся» в некоторые моменты времени; это центры коллапса. Их можно наделить важной функцией – быть представителями локальных существователей.
Каждый электрон, в соответствии с этой идеей, появляется в нашем пространстве крайне редко – только в те моменты, когда он оказывается причиной коллапса волновой функции. Появляется, конечно, в центре коллапса, и только на чрезвычайно короткое время, которое занимает само событие коллапса. Между такими событиями («вспышками») в пространстве ничего нет. Волновая функция, конечно, никуда не девается, она продолжает существовать в своем математическом пространстве и только «суживается», когда здесь у нас «вспыхивает» какой-то электрон{89}.
В одном кубическом миллиметре обычного вещества – скажем, внутри человеческого тела – почти пусто и только вспыхивают описанным образом порядка 10 000 электронов в секунду. Этого вполне достаточно, чтобы ясно видеть контуры тела. Неординарность такого взгляда на реальность, конечно, впечатляет, но в нем нет очевидных логических несоответствий (и я не возьмусь утверждать, что в нем больше «странного», чем в существовании множества параллельных и постоянно разделяющихся вселенных). В рамках этих представлений волновая функция становится инструментом для предсказания (вероятностей) будущих вспышек исходя из тех, которые уже случились, и тут у всей схемы спонтанного коллапса обнаруживается ценный бонус: ее удается достаточно естественным образом согласовать со специальной теорией относительности. Это, без сомнения, достижение и определенное свидетельство жизнеспособности. Мы уже видели (глава 14), что для интерпретаций квантовой механики такое согласование совершенно не гарантировано, поэтому «вспышечный» вариант спонтанного коллапса получает дополнительные очки – что, впрочем, само по себе вовсе не означает, что природа действительно устроена таким образом. И вообще, идея спонтанного коллапса – это, строго говоря, уже не интерпретация квантовой механики, а предложение по ее развитию в несколько иную теорию, которую можно и нужно проверять экспериментально.