Один такой фундаментальный квантовый закон и составляет предмет этой главы. Суть его в том, что некоторые используемые при описании мира величины – такие как положение в пространстве и скорость – враждуют друг с другом. Враждуют в том смысле, что не могут одновременно иметь точно определенные значения для одного и того же квантового объекта. Практически так же, как невозможно равенство 0 = 1, невозможно и одновременно снабдить, скажем, электрон точным положением в пространстве и точным значением скорости. Или одно, или другое. Вместе они к электрону не прикрепляются. Это фундаментальный закон природы{8},{9}.
Возможно, здесь самое время подумать, как удачно, что электроны никак не выглядят, – ведь непонятно, как могло бы выглядеть такое необычное, «половинное» (или действительно половинчатое) существование. (Не самая, возможно, удачная метафора, но как действительно представлять себе табуретку, у которой точно определена или форма сиденья, или длина ножек?)
Последствия вражды между положением в пространстве и скоростью многочисленны. Для начала, в квантовом мире запрещен покой. Покой означал бы, что и положение, и скорость (равная в данном случае нулю) определены одновременно. Тут можно потренироваться в подавлении своей интуиции. Так и хочется спросить: «Как это запрещен? А если я возьму и остановлю что-то в одной точке?» А как, простите, вы собираетесь это сделать? С помощью чего именно и как будете контролировать свои действия? Можно попробовать облучать электрон светом, чтобы узнать, где он находится. Для хорошей точности потребуется свет с очень малой длиной волны, но тогда даже один фотон окажется таким энергичным (и будет заодно нести такой импульс), что передаст вашему электрону некоторую скорость. Продолжение рассуждений показывает, что нет процедуры, позволяющей обеспечить полную неподвижность квантового объекта. И это – не последствия нашей неизобретательности, а отражение того факта, что неподвижность невозможна как таковая.
И не только покоя нет. Запрещено еще и перемещаться из одной точки в другую по траектории. Да, в квантовом мире невозможно движение по траектории. Траектория – линия, строго говоря, воображаемая, но она дает неплохое описание того, как движутся обычные тела – например, песчинки, которые я сдул с ладони. Каждая точка траектории – это определенное положение в некоторый момент времени. А поскольку это положение плавно меняется с течением времени, в каждой точке траектории определена еще и скорость. Именно это в силу квантовой вражды и невозможно, причем в смысле строгого математического «нельзя».
Кроме того, вражда напрямую затрагивает и энергию, и вот каким образом. Как правило, энергия складывается из двух частей различной природы: энергии движения и энергии взаимодействия; первая зависит от скоростей, а вторая – от взаимного расположения всех самостоятельных компонентов системы. Запрет на одновременное существование точно определенных скорости и положения приводит к тому, что эти две части энергии также не могут иметь определенные значения одновременно. Но во что же тогда превращается полная энергия – сумма враждующих величин?
Мы продолжаем погружение в мир, лишенный наглядности. Энергия оказывается там не числом, а довольно абстрактной математической конструкцией – операцией. Предназначение этой операции – не выражать какое-то численное значение, а быть агентом воздействия, т. е. производить изменения. Не самый последний вопрос при этом – изменения в чем? В состоянии той квантовой системы, которую мы взялись описывать. Энергия превращается в орудие воздействия на состояния. Дело «всего лишь» в том, что сами состояния – это вовсе не наглядные описания «что где находится и куда и как движется» (они, как мы только что обсуждали, невозможны). Вместо этого состояния – это объекты, населяющие специальные математические пространства. Они представляют собой «рабочих лошадок» квантовой механики, и мы познакомимся с ними подробнее в следующих главах. Сейчас же главное для нас в том, что это математические объекты, а поэтому к ним можно применять различные математические же операции. Квантовая механика этим и живет.
Вообще за каждой физической величиной в самой глубине всей схемы квантовой механики стоит определенная операция – «преобразователь» в специальном математическом пространстве{10}. Причина вражды любых двух величин, в том числе и между положением в пространстве и скоростью, – вражда отвечающих им операций там, в «математическом ядре» квантовой теории. Происходящее там абстрактно, но не лишено изящества: две физические величины враждуют по той единственной причине, что отвечающие им абстрактные операции чувствительны к порядку, в котором они выполняются. Это значит, что выполнение сначала операции А, а потом операции Б дает другой результат, чем выполнение сначала Б, а потом А. Вообще-то в отношении операций это не слишком удивительно и наша обычная жизнь полнится примерами того, как важен порядок действий. Я ограничусь безобидным «сначала порезать овощи, а потом их пожарить, или наоборот»: каждая операция изменяет то, к чему она применяется (состояние овощей), но результат очевидным образом зависит от порядка. (Небольшое размышление показывает, что зависимость от порядка окружает нас в жизни буквально со всех сторон.)
Возвращаясь к энергии, состоящей из двух враждующих частей и ставшей поэтому не числом, а операцией: вражда между двумя ее частями в полной мере разворачивается при наличии притяжения между атомным ядром и электроном, потому что притяжение зависит от расстояния, т. е. в общем от положения в пространстве, в то время как энергия движения зависит от скорости. Две «конфликтующие стороны» преобразуют математические состояния очень по-разному: когда одна сторона вызывает незначительные изменения, другая «назло» – очень существенные, и наоборот. Энергия в результате становится в математическом пространстве свирепым преобразователем, от которого (почти) никому нет спасения.
Такая беда с энергией «мешает» существованию атома, поскольку энергия изолированного атома не должна меняться со временем (иначе с атомом что-нибудь происходит), а для этого уж во всяком случае обязана иметь какое-то численное значение!
«Мешает» действительно настолько сильно, что собрать атом из ядра и электронов невозможно почти никогда – за исключением специальных случаев «примирения». Оно наступает, если среди математических состояний, подвергаемых преобразованиям, найдется такое, что две враждующие части энергии, действуя совместно, почти его не изменяют. Что означает «почти», сказано в следующем абзаце, а случиться подобное может, только если энергия каждого электрона принимает одно из специальных (численных) значений.
Список разрешенных значений энергии возникает как условие «примирения» враждующих вкладов в энергию электрона в атоме в исключительных случаях. Для этого необходимо, чтобы существовал специальный математический объект, которому удается почти не меняться под действием энергии как операции, а именно, отделаться просто умножением на число. (Это и правда мягкий вариант изменения; в качестве бытового примера можно сравнить изменение текста из-за того, что размер всех шрифтов в нем умножен на некоторое число, с пропусканием страниц через шредер.) Появляющееся таким образом число и становится энергией электрона в атоме. Так формируется весь список энергий, при которых только и может существовать атом, – и возникает дискретность, которую мы обсуждали в предыдущей главе.
Для сравнения, у электрона, свободно летящего в пространстве, никакой дискретности нет; его энергия целиком сводится к энергии движения. Она выражается только через скорость, враждовать ей в данном случае не с кем, и никаких отдельных разрешенных значений энергии движения не возникает. Дискретно многое, но не всё.
В истории создания квантовой механики можно при желании усмотреть символизм, перекликающийся с характерной для нее самой «враждой», т. е. наличием несовместимых величин. Поначалу такими же несовместимыми выглядели две идеи, высказанные двумя разными людьми, но при этом – несмотря на кажущуюся непримиримость самих идей и приближающиеся к враждебным отношения между их авторами – вместе составившие основу квантовой механики.
Противостоящие одна другой идеи принадлежали Гайзенбергу (которого немало вдохновлял Бор) и Шрёдингеру (которого вдохновляло нечто иное).
Создатели нового описания мира пришли к осознанию, что структуру атома нельзя постичь, распространяя на него привычные модели и полагаясь на интуицию и «само собой разумеющиеся» факты. Все, что «само собой разумеется», – обобщение опыта, накопленного в классическом мире, и сколь бы естественными ни казались нам некоторые вещи, их нельзя переносить в квантовый мир без абсолютной необходимости. Рассуждения без привлечения «само собой разумеющегося» требовали немалой дисциплины мышления, и первым тут достиг успеха Гайзенберг (июнь 1925 г.). Он смог сформулировать правила описания квантовых объектов, очень строго следя за тем, чтобы иметь дело только с тем, что можно было в принципе извлечь из экспериментов, и не привнося никаких «самоочевидных» идей. Электрон в атоме, по Гайзенбергу, вел существование, привязанное только к переходам между дискретными значениями энергии – только тогда он заявлял о себе, излучая или поглощая порцию света определенной длины волны. Гайзенберг создал целую систему для обращения с дискретными величинами вместо обычных непрерывных. На ее основе удалось вычислить – математически вывести – энергетические ступеньки (разрешенные значения энергии) в атоме водорода.
Атом был «спасен»: электрон не оказывался в объятиях атомного ядра, отдав всю свою энергию в виде света (проблема, о которой мы говорили в главе 2), потому что в списке разрешенных значений имелась наименьшая энергия. С нее начинается список, и электрону, который ее приобрел, просто «некуда бежать», отдавая энергию.