дим за их игрой. В чём правила игры, мы не знаем; всё, что нам разрешили, — это наблюдать за игрой. Конечно, если посмотреть подольше, то кое-какие правила можно ухватить. Под основными физическими воззрениями, под фундаментальной физикой мы понимаем правила игры. Но, даже зная все правила, можно не понять какого-то хода просто из-за его сложности или ограниченности нашего ума. Тот, кто играет в шахматы, знает, что правила выучить легко, а вот понять ход игрока или выбрать наилучший ход порой очень трудно. Ничуть не лучше, а то и хуже обстоит дело в природе. Не исключено, что в конце концов все правила будут найдены, но пока отнюдь не все они нам известны. То и дело тебя поджидает рокировка или какой-нибудь другой непонятный ход. Но помимо того, что мы не знаем всех правил, лишь очень и очень редко нам удаётся действительно объяснить что-либо на их основе. Ведь почти все встречающиеся положения настолько сложны, что нет никакой возможности, заглядывая в правила, проследить за планом игры, а тем более предугадать очередной ход. Приходится поэтому ограничиваться самыми основными правилами. Когда мы разбираемся в них, то уже считаем, что «поняли» мир[10].
В конце концов, мы никогда не сможем пройти дальше установления каких-то законов и никогда не сможем узнать, почему они именно такие. Но мы успешно открываем эти законы путём вычленения простого из сложного и отбрасывания несущественного, руководствуясь теми правилами, о которых я рассказывал в этой и предыдущей главах. И когда мы пытаемся понять мир тем способом, которым это делают физики, это всё, что мы можем надеяться сделать. Тем не менее, если мы очень постараемся и удача окажется на нашей стороне, мы сможем, по крайней мере, получить удовольствие от прогнозирования того, что произойдёт в ситуации, которую никто никогда раньше не наблюдал. Поступая таким образом, мы можем надеяться обнаружить новые скрытые физические закономерности, предсказав их при помощи математики, и надо признать, что это делает процесс познания мира чрезвычайно увлекательным занятием.
Часть вторая.ПРОГРЕСС
Глава 3.ТВОРЧЕСКИЙ ПЛАГИАТ
Чем сильнее вещи меняются, тем больше они остаются теми же.
Бытует расхожее мнение, что в основе новых научных открытий всегда лежат радикально новые идеи. В действительности всё обстоит совсем наоборот. Старые идеи не только выживают в научных революциях, но и не теряют своего фундаментообразующего положения.
Несмотря на то что Вселенная бесконечно богата разнообразными явлениями, число основополагающих принципов, управляющих этими явлениями, весьма невелико. В результате в физике ценятся не столько новые, сколько работающие идеи. Таким образом, мы используем одни и те же концепции, один и тот же формализм, одни и те же методы, одни и те же картины мира, приспосабливая и комбинируя их в разных вариантах до тех пор, пока они работают.
Подобный подход к разгадкам тайн природы может показаться робким и не креативным, но это не так. Раз уж у кого-то хватило смелости предположить, что при помощи пращи можно убить гиганта, то кто запрещает нам предполагать, что те же законы, которые управляют полётом камня, выпущенного из пращи, не годятся для описания эволюции Вселенной? Чтобы понять, как использовать старую идею в новой и необычной ситуации, зачастую требуется немалая фантазия.
В физике «меньше» значит «больше». Пересадка старых идей в организм новых теорий столь часто завершается успехом, что мы имеем все основания ожидать, что эта практика будет приносить плоды и в дальнейшем. Даже те редкие новые физические концепции, которые пробили себе путь в науке, обречены на мирное сосуществование с уже имеющимися знаниями. Это тот творческий плагиат, который делает физику простой и понятной, поскольку это означает, что фундаментальных физических принципов очень мало.
Одним из величайших современных заблуждений относительно науки является представление, будто научные революции сметают всё, что было прежде. Например, часто приходится слышать, что Эйнштейн опроверг Ньютона. Но это не так. Движение мяча, который я выпускаю из своей руки, описывается и всегда будет описываться законами Ньютона. И никакая научная революция не заставит его падать вверх. Наиважнейшим «законом» физики является требование, чтобы новые теории всегда согласовывались со старыми, чья работоспособность проверена практикой. Поэтому все последующие теории всегда будут активно заимствовать идеи у предыдущих.
Этот метод «делания науки» дополняет метод аппроксимации реальности, о котором я говорил ранее. Фейнмановское «к чёрту торпеды, полный вперёд!» предполагает, что не обязательно понимать абсолютно всё, чтобы двигаться дальше. Мы исследуем неизвестные воды при помощи тех инструментов, которые имеются в нашем распоряжении, не теряя времени и сил на создание нового арсенала.
Прецедент, положивший начало этой традиции, был создан Галилеем. Как я уже говорил в первой главе, Галилей сосредоточил внимание на простейших, наиболее общих аспектах движения, пренебрегая частностями, и это преобразило всю научную картину мира. Галилея не интересовало, почему вещи движутся, вместо этого он поставил на первое место вопрос как они движутся.
Мы создаём совершенно новую науку о предмете чрезвычайно старом. В природе нет ничего древнее движения, и о нём философы написали томов немало и немалых. Однако я излагаю многие присущие ему и достойные изучения свойства, которые до сих пор не были замечены либо не были доказаны[11].
Как только Галилей показал, что состояние покоя есть лишь особый случай состояния движения с постоянной скоростью, аристотелевская философия, придававшая состоянию покоя особый статус, затрещала по швам. В действительности утверждение Галилея предполагает нечто большее, оно предполагает, что законы физики выглядят с точки зрения движущегося с постоянной скоростью наблюдателя точно так же, как и с точки зрения покоящегося. Если некоторый объект находится в состоянии равномерного прямолинейного движения относительно одного наблюдателя, то он также будет находиться в состоянии равномерного прямолинейного движении и относительно другого. Аналогично объект, который ускоряется или замедляется по отношению к одному наблюдателю, будет делать то же самое и по отношению к другому. Эта эквивалентность двух точек зрения получила название принцип относительности Галилея, который предвосхитил Эйнштейна почти на три столетия.
Нам очень повезло, что принцип относительности Галилея оказался справедлив, потому что, когда мы измеряем скорости и перемещения окружающих нас объектов относительно неподвижной и стабильной terra firma[12], Земля в то же самое время летит по орбите вокруг Солнца, Солнце обращается вокруг центра Галактики, Галактика движется относительно местной группы галактик и так далее. Так что мы в действительности не стоим на месте, а летим с достаточно большой скоростью относительно далёких галактик. Если бы нам пришлось принимать во внимание все эти движения, чтобы описать полёт мяча относительно Земли, то ни Галилей, ни Ньютон никогда не смогли бы вывести свои законы. Законы классической физики работают только потому, что равномерное (в масштабах человеческой жизни) движение нашей Галактики относительно её соседей не изменяет поведение предметов на Земле. Открытие же этих законов, в свою очередь, позволило астрономам впоследствии обнаружить движение нашей Галактики относительно других объектов во Вселенной.
Я вернусь к теме относительности позже. Сейчас же я хочу рассказать, как Галилей развил свой первый успех в исследовании равномерного движения. Поскольку большинство движений, которые мы наблюдаем в природе, не являются равномерными, Галилей считал необходимым исследовать и их. И снова мы встречаемся с уже сформулированной ранее максимой, требующей задаваться вопросом не «почему?», а «как?».
Мне думается, что сейчас неподходящее время для занятий вопросом о причинах ускорения в естественном движении, по поводу которого различными философами было высказано столько различных мнений; одни приписывали его приближению к центру, другие — постепенному частичному уменьшению сопротивляющейся среды, третьи — некоторому воздействию окружающей среды, которая смыкается позади падающего тела и оказывает на него давление, как бы постоянно его подталкивая; все эти предположения и ещё многие другие следовало бы рассмотреть, что, однако, принесло бы мало пользы. Сейчас для нашего Автора будет достаточно, если мы рассмотрим, как он исследует и излагает свойства ускоренного движения (какова бы ни была причина ускорения), приняв, что моменты скорости, начиная с перехода к движению от состояния покоя, идут, возрастая в том же простейшем отношении, как и время, то есть что в равные промежутки времени происходят и равные приращения скорости[13].
Галилей рассматривает наиболее простой вид неравномерного движения, а именно такой, при котором скорость тела изменяется с течением времени равномерно. Насколько правомерна такая идеализация? Галилей гениально показал, что подобное упрощение фактически описывает движение всех падающих тел, если пренебречь сопротивлением воздуха. Это исследование открыло путь к ньютоновскому закону всемирного тяготения. Без знания о том, что в основе падения тел лежит равноускоренное движение, прийти к соотношению между силой, массой и ускорением было бы весьма затруднительно. В действительности, чтобы прийти к этому выводу, Галилею пришлось преодолеть два препятствия, не имеющих непосредственного отношения к обсуждаемой теме, но его аргументы были настолько простыми и убедительными, что я не могу устоять перед соблазном привести их.