Эти утверждения звучали настолько абсурдно, что никто поначалу не принял их всерьёз. Утверждение Эйнштейна, что скорость света одинакова для всех наблюдателей, потребовало подробного анализа всех вытекающих из него следствий и тщательного разбора всех сопутствующих парадоксов. Одним из таких следствий является, например, уже давно подтверждённое экспериментально замедление хода движущихся часов. Другим следствием оказывается невозможность для любого физического тела двигаться быстрее света. Эти следствия логически вытекают из постулата об инвариантности скорости света. Эйнштейн, несомненно, заслуживает благодарности за ту отвагу и мужество, которые он проявил, решившись принять независимость скорости света от системы отсчёта наблюдателя в качестве постулата, и за ту огромную работу которую он проделал, выводя все следствия этого постулата. Но главная его заслуга состоит в том, что он не отбросил существующие законы физики, а нашёл оригинальный способ уложить картину мира в их рамки — настолько оригинальный, что на первый взгляд этот способ кажется безумным.
В следующей главе я расскажу вам об одном из взглядов на теорию Эйнштейна, который представляется мне наименее безумным. Сейчас же я хочу ещё раз обратить внимание тех, кто заявляет: «Теория относительности — бред, поэтому я предлагаю собственную теорию!», на то, что Эйнштейн никогда не отвергал существующие физические законы. Напротив, он показал, что эти законы содержат нечто такое, о чём раньше никто не задумывался.
Специальная теория относительности и квантовая механика изменили нашу интуитивную картину реальности более глубоко, чем любые другие теории XX века. Эти две теории потрясли основы того, что мы обычно считаем здравым смыслом, они изменили наши представления о пространстве, времени и материи. Оставшаяся часть XX столетия была в значительной степени посвящена изучению последствий этих изменений. Для доказательства того, что теория согласуется со всеми существующими физическими принципами, зачастую требуется не меньше изобретательности и настойчивости, чем для разработки самой теории, как это, например, было в случае попытки «поженить» теорию относительности и квантовую механику о которой я уже упоминал, рассказывая о совещании на Шелтер-Айленде, когда зашла речь о рождении пар частиц и античастиц из ничего.
Хотя я уже несколько раз упоминал квантовую механику, я до сих пор не рассказывал о принципах, положенных в её основу. Дорога к созданию квантовой механики оказалась гораздо менее прямой, чем дорога к созданию теории относительности, из-за того что предмет её изучения — явления, происходящие на атомном и субатомном уровне, — не был предметом нашего повседневного опыта. Тем не менее исходной точкой квантовой механики тоже является одно утверждение, которое, на первый взгляд, кажется безумным. Если я брошу мяч и моя собака поймает его в воздухе после того, как мяч пролетит десяток метров, я могу проследить весь полёт мяча и убедиться, что его траектория полностью соответствует предсказаниям галилеевской механики. Однако по мере перехода ко всё более малым расстояниям и временам полёта мяча определённость его траектории постепенно исчезает. Законы квантовой механики утверждают, что, если объект переместился из пункта A в пункт B, мы не можем с уверенностью утверждать, что он определённо находился в какой-либо точке между начальным и конечным пунктами!
На первый взгляд кажется, что мы можем легко опровергнуть это утверждение. Я могу направить луч света на объект и проследить весь путь этого луча. То же самое вроде бы относится и к электронам: поместив детектор на пути электронного пучка, летящего из A и B, мы всегда можем обнаружить электроны в любой точке прямой, соединяющей начальный и конечный пункты их путешествия.
Так какой же смысл в первоначальном утверждении, если его так легко опровергнуть? Смысл в том, что природа хитрее нас. Разумеется, мы можем обнаружить электрон между пунктами A и B, но мы не можем сделать это безнаказанно! Если, к примеру мы направляем пучок электронов на флуоресцирующий экран, то, достигая экрана, электроны будут вызывать на нём вспышки света. Затем мы можем поставить на пути электронов непроницаемую ширму с двумя узкими щелями, чтобы электроны могли проходить либо через одну, либо через другую щель. Для того чтобы определить, через какую из щелей проходит электрон, мы можем поставить возле каждой щели детектор. Вот тут-то и начинается самое интересное. Если мы не фиксируем, через какую из щелей проходят электроны, на экране возникает картина из светлых и тёмных полос, такая же, как и при прохождении через две щели луча света. Другими словами, результат получается такой, как если бы каждый электрон проходил одновременно через обе щели! Если же задействовать детекторы возле щелей, то картина на экране радикально меняется — полосы исчезают. Производя измерения, мы изменяем результат опыта! Таким образом, мы можем либо определить, через какую из щелей проходит электрон, но тогда его путь из А в В на самом деле распадается на два независимых пути: от А до одной из щелей и от этой щели до В, либо мы фиксируем электроны только в точках А и В, но тогда не имеем никакой информации, через какую щель они прошли, а электроны ведут себя так, будто прошли сразу через обе.
Поведение, подобное этому, возникает из-за того, что законы квантовой механики на фундаментальном уровне вносят неопределённость в любой процесс измерения физических величин. Например, существует принципиальное ограничение, накладываемое квантовой механикой на нашу способность одновременного точного измерения положения и скорости частицы. Чем более точно мы измеряем координату, тем менее точно нам известна скорость, и наоборот. Это происходит из-за того, что любое измерение вносит возмущение в измеряемую величину. В обычных человеческих масштабах это возмущение настолько мало, что остаётся незамеченным. Но в микромире им уже нельзя пренебрегать. Квантовая механика получила своё название из-за того, что она основана на положении, согласно которому энергия любой системы не может изменяться на произвольную сколь угодно малую величину, вместо этого она передаётся фиксированными порциями — пакетами, или квантами (от латинского слова quantum — количество). Эта маленькая порция энергии сопоставима с энергиями частиц в атомных системах. Когда мы пытаемся измерить какую-нибудь характеристику такой частицы, мы должны передать ей или забрать у неё некоторую фиксированную порцию энергии. Из-за того, что величина этой порции сопоставима с энергией самой частицы, после измерения характеристика частицы существенно меняется. Но если мы будем измерять какую-нибудь характеристику системы в течение очень долгого времени, то средняя энергия системы будет оставаться более-менее постоянной, даже если она претерпевает значительные колебания в течение коротких промежутков времени. Таким образом, мы приходим к ещё одному соотношению неопределённостей: чем более точно мы хотим измерить энергию системы, тем больше времени мы должны затратить на процесс измерения.
Соотношение неопределённостей лежит в основе квантовомеханического поведения. Впервые оно было выведено немецким физиком Вернером Гейзенбергом, одним из отцов-основателей квантовой механики. Гейзенберг, как и другие молодые учёные 1920-х и 1930-х годов, принял активное участие в создании новой теории. Некоторые мои коллеги настаивают на том, что своим вкладом в физику XX столетия Гейзенберг уступает только Эйнштейну. К сожалению, репутация Гейзенберга была несколько подмочена его работой на нацистскую Германию, хотя до конца неизвестно, поддерживал он нацистский режим или же, наоборот, тайно вредил ему. Но, в отличие от ряда своих коллег, он не выступал против него открыто. В любом случае, его работы в области квантовой механики, в частности открытие принципа неопределённостей, навсегда изменили наше представление о физическом мире. Помимо физики, научные открытия XX века сильнейшим образом повлияли и на философию.
Ньютоновская механика подразумевает полный детерминизм. Законы механики предполагают, что мы способны, в принципе, с любой точностью предсказать поведение любой системы на любой наперёд заданный промежуток времени, в том числе и такой сложной, как человеческий мозг, если будем знать исходные координаты и скорости всех составляющих эту систему частиц. Квантово-механическое соотношение неопределённостей радикальным образом изменило эту радужную перспективу. Если мы зададимся целью получить точную информацию о координатах всех частиц системы, мы рискуем полностью потерять информацию об их скоростях. А не зная начальных скоростей, мы не в состоянии спрогнозировать поведение всей системы во времени. Отчасти это хорошая новость, поскольку она оставляет в физике место для таких явлений, как свобода воли.
В то время как рождение квантовой механики произвело в среде нефизиков, и особенно философов, большое брожение умов, стоит отметить, что все философские следствия квантовой механики оказали очень мало влияния на физику. Всё, что необходимо физикам, — это принимать правила игры. А правила таковы, что в природе существует соотношение неопределённостей. Есть много способов описать происхождение этого соотношения, но, как всегда, полностью самосогласованным является только математический способ. Наиболее красивую математическую формулировку, которая к тому же допускает визуализацию, предложил не кто иной, как Ричард Фейнман.
Величайшим вкладом Фейнмана в физику стала формулировка квантовой механики в терминах так называемых интегралов по траекториям. Суть его метода та же, что и метода расчёта траекторий световых лучей на основе принципа Ферма, который мы рассматривали в предыдущей главе. Этот метод сегодня используют в своей работе большинство физиков. Он включает один математический трюк, называемый мнимым временем, о котором, в частности, упоминает Стивен Хокинг в своей книге «Краткая история времени».
Фейнмановские интегралы по траекториям представляют собой правила для расчёта квантово-механических процессов, и эти процессы в определённом смысле протекают именно таким способом. Представим себе все возможные пути, которыми частица может добраться из пункта А в пункт В: