Какой из этого следует вывод? Если мы хотим быть последовательными, мы должны признать, что для разрешения упомянутого ранее противоречия пространство-время в системе отсчёта, движущейся с ускорением или находящейся в гравитационном поле, должно быть искривлённым. Почему же мы не ощущаем эту кривизну, если она на самом деле существует? Потому что мы всегда воспринимаем пространство локально в небольшой окрестности. Представьте себе таракана, живущего в Канзасе. Мир для него представляет собой плоскую, как доска, двухмерную поверхность. Только позволив себе роскошь посмотреть на эту поверхность из трёхмерного пространства, можно увидеть, что на самом деле она представляет собой поверхность сферы. Аналогично, чтобы увидеть кривизну трёхмерного пространства, надо посмотреть на него из четырёхмерного, но это так же невозможно для нас, как невозможно для таракана, обречённого вечно ползать по поверхности земли, — трёхмерное пространство находится за пределами его восприятия.
В этом смысле Эйнштейн был Эратосфеном XX века. Эратосфен утверждал, что Земля — шар, и чтобы в этом убедиться, достаточно пронаблюдать за тем, на какую высоту поднимается в полдень солнце в разных городах[16]. Эйнштейн утверждал, что трёхмерное пространство искривлено, и чтобы в этом убедиться, достаточно пронаблюдать за поведением светового луча в гравитационном поле. Эйнштейн предложил три способа проверки его гипотезы.
Во-первых, при прохождении через искривлённое пространство рядом с Солнцем световой луч должен отклоняться на вдвое больший угол, чем если бы он просто падал в плоском пространстве. Во-вторых, если пространство возле Солнца искривлено, то орбита ближайшей к Солнцу планеты Меркурий должна представлять собой не идеальный эллипс, а рисовать в пространстве «розетку», что должно приводить к медленному смещению перигелия — наиболее близкой к Солнцу точки орбиты. И в-третьих, часы на первом этаже небоскрёба должны идти медленнее, чем на последнем.
Смещение перигелия Меркурия было известно уже давно, и расчёт Эйнштейна прекрасно совпал с наблюдаемой величиной. Однако объяснение чего-то уже известного не так впечатляет, как предсказание чего-то нового. Два других предсказания Эйнштейна относились как раз к последней категории.
В 1919 году экспедиция под руководством сэра Артура Стэнли Эддингтона отправилась в Южную Африку для наблюдения полного солнечного затмения. Когда луна закрыла солнечный диск, Эддингтон сфотографировал звёзды, расположенные вблизи Солнца. Сравнив полученную фотографию с фотографией, выполненной в другое время года, он определил, что видимые положения звёзд во время затмения отличаются от обычных в точности на предсказанную Эйнштейном величину. Луч света действительно изгибался, проходя мимо Солнца, а имя Эйнштейна с тех пор стало нарицательным.
Третья проверка была выполнена лишь сорок лет спустя. Сотрудник Гарвардского университета Роберт Паунд и его аспирант Глен Ребка показали, что частота света, излучённого в подвале физической лаборатории, уменьшается, когда свет достигает приёмника, расположенного на верхнем этаже. И это изменение частоты точно совпало с предсказанным Эйнштейном.
С точки зрения общей теории относительности искривление траектории и ускорение движущегося в гравитационном поле тела могу быть представлены как проявление кривизны пространства. Чтобы это понять, вернёмся снова к двухмерной аналогии. Представим себе, что мы видим на стене пещеры следующую проекцию траектории движения тела вокруг большого объекта.
Для объяснения такого движения можно придумать силу, которая действует на небольшое тело со стороны большого. Но можно предположить, что настоящая поверхность, по которой движется тело, искривлена в трёхмерном пространстве, и тело движется со своей точки зрения «прямо», но его траектория проходит по искривлённой поверхности:
Похожие аргументы использовал и Эйнштейн, утверждая, что вместо силы притяжения, действующей между двумя телами, можно рассматривать ситуацию, когда массивное тело искривляет пространство-время вокруг себя, а другие тела, стремясь двигаться «прямо» в искривлённом пространстве — времени, движутся по искривлённым траекториям. Это замечательное соотношение между материей и пространством-временем напоминает Уробороса — змея, который кусает себя за хвост. Кривизна пространства управляет движением материи, распределение материи в пространстве, в свою очередь, управляет кривизной пространства. Именно эта обратная связь между материей и кривизной делает общую теорию относительности намного сложнее ньютоновской механики, где пространство, в котором перемещаются объекты, абсолютно и неизменно.
В привычном окружающем нас мире кривизна пространства настолько мала, что её последствия практически незаметны, и это является одной из причин, по которой понятие искривлённого пространства кажется нам чуждым. Путешествуя из Нью-Йорка в Лос-Анджелес, луч света отклоняется из-за искривления пространства, вызываемого массой Земли, всего на один миллиметр. Однако если время путешествия света велико, то даже небольшой эффект может привести к заметным последствиям. Возьмём, к примеру, сверхновую 1987 года, о которой я уже упоминал как об одном из самых интересных астрономических событий XX века. Нетрудно посчитать — и мы с моим коллегой действительно подсчитали и поразились настолько, что написали об этом научную статью, — что небольшой кривизны пространства, сквозь которое свет от сверхновой 1987 года добирается до нас с другого конца Галактики, оказалось достаточно, чтобы задержать его прибытие на девять месяцев! Если бы пространство не было искривлено, мы увидели бы вспышку сверхновой 1987 года ещё летом 1986-го.
Финальным испытательным полигоном для идей Эйнштейна стала сама Вселенная. Общая теория относительности описывает не только искривление пространства вблизи массивных тел, но и геометрию всей Вселенной. Если средняя плотность вещества во Вселенной окажется достаточно большой, то пространство может искривиться настолько, что замкнётся в гигантский аналог сферы в трёхмерном пространстве. Но что ещё более важно, в этом случае Вселенной придётся рано или поздно остановить своё расширение и начать сжиматься, придя в конечном итоге к Большому сжатию — явлению, обратному Большому взрыву.
Есть что-то зачаровывающее в «закрытой» Вселенной — как называют Вселенную с высокой средней плотностью вещества. Я помню, как, будучи ещё студентом, впервые услышал об этом на лекции астрофизика Томаса Голда и запомнил на всю жизнь. В закрытой Вселенной, которая замкнута сама на себя, луч света, движущийся по прямой линии, в конечном итоге вернётся в ту точку, из которой он вышел, подобно тому как вернётся в исходную точку путешественник, совершивший кругосветное путешествие на поверхности Земли. То есть свет в такой Вселенной никогда не сможет уйти в бесконечность. Когда подобное происходит в меньших масштабах, то есть когда космический объект имеет настолько высокую плотность, что даже свет не может убежать с его поверхности, мы называем его чёрной дырой.
Если наша Вселенная закрыта, то мы сами живём внутри самой настоящей чёрной дыры! Но не в той, которая показана в диснеевском фильме 1979 года. Суть в том, что чем больше размер чёрной дыры, тем меньше должна быть плотность вещества, необходимая для её создания. Чёрная дыра с массой Солнца будет иметь размер порядка километра и среднюю плотность в сотни миллиардов тонн на кубический сантиметр. Чёрная дыра с массой, равной массе наблюдаемой части Вселенной, будет иметь размер, сравнимый с размером видимой части Вселенной, при средней плотности всего лишь порядка 10-29 грамма на кубический сантиметр!
Сегодняшние наблюдательные данные, однако, свидетельствуют о том, что мы живём не внутри чёрной дыры. По крайней мере, большинство теоретиков считает, что средняя плотность вещества во Вселенной хотя и близка к критической, но всё же недостаточна, чтобы закрыть Вселенную. По данным наблюдений, наш мир, скорее всего, избежит Большого сжатия и будет продолжать расширяться вечно. Характер расширения Вселенной более всего соответствует пограничному случаю между открытой и закрытой Вселенными, который носит название плоской Вселенной, и если источником гравитационного притяжения служит материя, то расширение Вселенной будет в этом случае происходить замедляющимися темпами, но никогда не остановится. Так как для плоской Вселенной необходима средняя плотность вещества примерно в 100 раз больше наблюдаемой, теоретики пришли к выводу, что на 99% Вселенная состоит из тёмной материи, невидимой для телескопов, о чём я уже рассказывал в главе 3. Причём даже рассчитанного путём «взвешивания» галактик и скоплений галактик количества тёмного вещества всё равно оказывается в три раза меньше, чем необходимо для плоской Вселенной.
Как мы можем доказать правильность этого предположения? Например, можно попытаться определить среднюю плотность в галактиках и скоплениях галактик, как описывалось в главе 3, но это косвенный способ, который не даёт прямых свидетельств плоскости Вселенной. Однако существует способ, позволяющий — по крайней мере, в принципе — напрямую измерить кривизну пространства. Каким образом разумный таракан из Канзаса мог бы удостовериться в кривизне земной поверхности, не совершая кругосветного путешествия и не поднимаясь в космос? Даже не будучи в состоянии представить себе сферу в трёхмерном пространстве, подобно тому как мы не можем представить себе трёхмерную гиперсферу в четырёхмерном пространстве, он мог бы провести ряд измерений, которые убедили бы его в том, что поверхность Земли является сферой. Ещё Евклид более двадцати веков назад доказал, что сумма трёх углов в любом треугольнике, начерченном на бумаге, равна 180°. Если я нарисую прямоугольный треугольник, один из углов которого имеет величину 90°, сумма двух других углов также должна составлять 90°. Поэтому каждый из оставшихся углов должен быть меньше 90°, как показано на следующем рисунке: