Даже простейшие и наиболее распространённые вещества могут проявлять в определённых условиях экзотические свойства. Я никогда не забуду как мой школьный учитель физики в шутку говорил, что в физике есть две вещи, доказывающие существование Бога.
Во-первых, это вода, которая практически единственная из всех веществ, замерзая, расширяется. Если бы вода не обладала такой особенностью, то водоёмы зимой промерзали бы до дна, рыбы не могли бы переживать зиму и, вероятно, никогда не доэволюционировали бы до людей. Во-вторых, коэффициент расширения бетона практически такой же, как коэффициент расширения стали. Если бы это было не так, то современные небоскрёбы не пережили бы зимы, потому что стальная арматура разорвала бы бетонные конструкции. Должен признаться, что второй пример мне не кажется удачным, потому что, если бы у стали и бетона были разные коэффициенты расширения, мы бы попросту не стали их использовать в строительстве, а нашли бы другие, более подходящие материалы.
В первом примере интересен тот факт, что вода — одно из самых распространённых веществ на Земле — ведёт себя при замерзании иначе, чем большинство других веществ.
Если же отвлечься от того, что вода расширяется при замерзании, то во всех остальных отношениях она является прекрасным примером поведения различных веществ при изменении физических условий. При встречающихся на Земле температурах вода может переходить из жидкого состояния в твёрдое или в газообразное. Каждое такое изменение называется фазовым переходом, потому что при этом происходит изменение фазы вещества: из твёрдой фазы в жидкую, из жидкой в газообразную и обратно. Будет справедливым утверждение, что если мы понимаем механизм и условия, управляющие фазовыми переходами любого вещества, то мы понимаем существенную часть окружающих нас физических явлений.
Главная трудность состоит в том, что в области фазового перехода вещество ведёт себя наиболее сложным образом. Когда вода закипает, в ней образуются турбулентные вихри, зарождаются пузырьки пара, которые растут и взрывообразно лопаются на поверхности. Однако в этой хаотической сложности поведения часто содержатся семена порядка. В то время как внутреннее строение коня может показаться безнадёжно сложным, простое масштабирование позволяет нам выделить некоторые его свойства, не требующие для своего объяснения углубления во все детали. Аналогично, безнадёжно пытаться описать поведение каждого пузырька пара в кастрюле с кипящей водой, но мы можем выделить несколько универсальных процессов, всегда происходящих, когда, скажем, вода кипит при определённой температуре и давлении, и изучить их путём масштабирования.
Например, когда вода кипит при нормальном атмосферном давлении, мы можем выбрать наугад небольшой объём внутри кастрюли и спросить себя: будет ли этот объём содержать пар или жидкую воду? В небольших масштабах описание окажется очень сложным. Очевидно, что не имеет смысла спрашивать про отдельную молекулу, представляет она собой жидкость или газ, потому что жидкое или газообразное состояние — это свойство множества молекул, характеризующееся, например, тем, близко или далеко они в среднем находятся друг от друга. Очевидно, что для нескольких молекул этот вопрос также не имеет смысла, потому что в процессе движения и столкновений молекулы могут находиться и в жидкости, и в газе, как далеко, так и близко друг от друга. Но как только рассматриваемый нами объём начинает содержать достаточно много молекул, чтобы можно было говорить об их усреднённом поведении, вопрос об агрегатном состоянии воды приобретает смысл.
Когда вода кипит при нормальных условиях, пузыри водяного пара и жидкость сосуществуют совместно. Обычно говорят, что при температуре 100 °С на уровне моря вода претерпевает фазовый переход первого рода. Любой макроскопический объём воды при температуре, точно соответствующей точке кипения, по прошествии некоторого времени приходит либо в газообразную, либо в жидкую фазу. Оба варианта являются равновероятными. При температуре чуть ниже точки кипения вода в любом пробном объёме всегда будет обнаруживаться в жидком состоянии, при температуре чуть выше точки кипения — в газообразном.
Несмотря на огромную сложность локальных процессов, идущих в воде в точке кипения, когда вода постоянно переходит из жидкого состояния в газообразное и обратно, всегда существует некий пограничный объём, относительно которого вопрос об агрегатном состоянии воды в нём имеет смысл. Для меньших объёмов локальные неоднородности плотности делают вопрос об агрегатном состоянии бессмысленным. Для больших объёмов можно однозначно сказать, в каком состоянии находится в них вода.
Разве не удивительно, что такая сложная система проявляет черты такого единообразного поведения? Это является следствием того факта, что каждая капля воды содержит невероятно огромное количество молекул, и хотя небольшие группы молекул могут вести себя хаотично, в большом объёме их совокупность приобретает конкретные макроскопические свойства. Это чем-то напоминает поведение людей. Каждый отдельный человек имеет свои собственные причины голосовать за того или иного политического кандидата. Некоторые даже пытаются пройти на избирательные участки со своими собственными бюллетенями, в которых вписано имя кандидата, не представленного в общем списке. Но на основе опросов общественного мнения политтехнологи могут с высокой степенью достоверности предсказать, кто из кандидатов победит на выборах. При усреднении по большому количеству избирателей все их индивидуальные различия нивелируются.
Теперь, когда мы обнаружили скрытый порядок в первоначальном хаосе, попробуем извлечь из него полезную информацию. Например, зададимся вопросом, изменяется ли масштаб, на котором становятся значимыми различия между жидким и газообразным состоянием, при изменении температуры и давления, при которых кипит вода. Если увеличить давление и таким образом увеличить плотность водяного пара, уменьшив тем самым разницу между плотностью пара и плотностью воды, то температура, при которой кипит вода, тоже увеличится. Из-за того, что теперь в точке кипения разность плотностей воды и пара меньше, размер областей, внутри которых агрегатное состояние воды будет неопределённым, как нетрудно догадаться, увеличится.
Если мы будем продолжать увеличивать давление, то придём к тому, что при определённых значениях давления и температуры, называемых критическими, различие между жидкостью и газом пропадёт в любом, даже бесконечном объёме. Вещество в таком состоянии невозможно отнести ни к жидкости, ни к газу. Немного ниже этой температуры и плотности вода больше похожа на жидкость, немного выше — на газ. Но станете ли вы считать воду при критической температуре жидкостью, газом или и тем и другим одновременно, зависит только от вашей точки зрения.
В критической точке у воды появляются новые, отсутствующие у жидкой воды и у водяного пара, свойства. Во-первых, на всех масштабах вещество выглядит одинаково. Вода в критической точке является «самоподобной» относительно изменения масштаба, в котором вы её изучаете. Если изобразить происходящие в воде флуктуации в большом увеличении, вы не заметите никаких отличий от картины этих флуктуации при обычном масштабе. Во-вторых, в критической точке в воде возникает явление, называемое критической опалесценцией. Из-за того, что в воде присутствуют флуктуации любого размера, она начинает рассеивать свет, имеющий любую длину волны, что проявляется в том, что вода теряет прозрачность и становится больше похожей на облако.
У этого состояния воды есть ещё одна интересная особенность. Свойство, когда что-то выглядит одинаково на разных масштабах, носит название масштабная инвариантность. Из-за масштабной инвариантности характер микроскопической структуры воды — то есть тот факт, что молекулы воды состоят из двух атомов водорода и одного атома кислорода, — становится неактуальным. Единственный параметр, который характеризует систему в критической точке, — это плотность. Если мы пометим области, в которых плотность чуть выше, как «+1», а области, в которых плотность чуть ниже, как «-1», то на всех масштабах структура воды будет выглядеть, как показано на следующем рисунке:
Это больше чем просто упрощённая картинка. Тот факт, что вода на всех масштабах физически представлена только этой одной эффективной степенью свободы, характеристикой, которая может принимать только два значения, полностью определяет характер фазового перехода в области критической точки. Это означает, что фазовый переход жидкость — газ для воды абсолютно идентичен фазовому перехода любого другого вещества, которое в своей критической точке может быть описано как набор чисел +1 и -1.
Рассмотрим, например, железо. Мало кто способен спутать кусок железа со стаканом воды, но каждый, кто когда-либо играл с магнитами, знает, что кусок железа можно намагнитить. На микроскопическом уровне каждый атом железа является маленьким магнитом, имеющим северный и южный полюсы. Когда поблизости нет других магнитов, атомы железа ориентированы случайным образом, так что в среднем их индивидуальные магнитные поля компенсируют друг друга, и суммарное магнитное поле равно нулю. Однако под влиянием внешнего магнита все атомные «магнитики» железа выстраиваются в направлении магнитного поля. Если внешнее магнитное поле направлено вверх, то все атомные «магнитики» в железе также повернутся вверх. Если внешнее магнитное поле направлено вниз, то все атомные «магнитики» в железе повернутся вниз.
Теперь представим себе идеализированный кусок железа, в котором атомные «магнитики» могут быть ориентированы только вверх или вниз, но ни в каком ином направлении. При низкой температуре при наличии внешнего магнитного поля, направленного, например, вверх, все «магнитики» повернутся в этом же направлении. Но если внешнее поле уменьшится до нуля, оно больше не будет диктовать «магнитикам», в каком направлении выстраиваться. Оказывается, «магнитикам» энергетически выгодно быть повёрнутыми в одном направлении, но в каком — совершенно безразлично. Они могли бы все повернуться вверх или вниз. Это означает, что в таком железном магните может происходить фазовый переход. После того как внешнее магнитное поле исчезнет, атомные «магнитики» могут через некоторое время из-за случайных тепловых колебаний все одновременно спонтанно перевернуться.