Страх физики — страница 30 из 43

Математически это напоминает то же, что происходит с водой. Достаточно лишь заменить направление, в котором ориентированы «магнитики» железа, на знак вариации плотности воды. Как и в случае воды, можно считать, что в отсутствие внешнего магнитного поля для куска железа существует некий характерный масштаб, такой, что на меньших масштабах тепловые флуктуации могут изменять групповую ориентацию «магнитиков», а на больших — нет, и эта область будет обладать какой-то усреднённой намагниченностью в определённом направлении. Кроме того, когда температура повысится до некоторого определённого значения, образец достигнет своей критической точки. В этой точке флуктуации направлений ориентации «магнитиков» будут присутствовать на всех масштабах, и говорить о каком-то выделенном направлении его намагниченности будет бессмысленно.

Самое важное, что в критической точке вода и железо ведут себя одинаково. Тот факт, что в реальности микроскопические структуры этих двух веществ совершенно различны, не имеет значения, потому что свойства вещества в критической точке характеризуются лишь двумя степенями свободы — направлениями вверх и вниз или избыточной и недостаточной плотностью — на всех масштабах физика явления оказывается нечувствительной к микроскопическим различиям. Поведение воды при приближении к критической точке в отношении того, считать её жидкостью или газом, полностью идентично поведению магнита в отношении направления, в котором он намагничен.

Установление того факта, что мы можем использовать масштабно-инвариантные свойства различных систем вблизи критической точки для нахождения единообразия и порядка в том, что в противном случае представлялось бы невероятно сложным хаосом, является одним из величайших успехов науки, называемой физикой конденсированных сред. Этот подход, который произвёл революцию в нашем понимании этого раздела физики, был впервые применён в 1960–1970-х годах, Майклом Фишером и Кеннетом Вильсоном в Корнелле и Лео Кадановым в университете Чикаго. С тех пор всякий раз, когда у физиков возникали сложности, связанные с масштабированием задачи, они использовали методы, разработанные в этом исследовании. В 1982 году Кеннет Вильсон был удостоен Нобелевской премии за свои исследования относительно применимости этих идей для описания свойств не только воды, но и элементарных частиц, о чём я расскажу в заключительной главе. Главное, что это не субмикроскопический мир элементарных частиц и не необъятный космический простор, содержащий скрытые соотношения, упрощающие реальность, это то, что связывает воедино разнообразные и сложные явления материального мира, с которыми мы постоянно сталкиваемся в обычной жизни. Вспоминайте об этом каждый раз, когда услышите шум закипающего чайника или увидите морозные узоры на оконном стекле.


Часть третья 1.ПРИНЦИПЫ

Глава 5.В ПОИСКАХ СИММЕТРИИ

— Есть ещё какие-то моменты, на которые вы посоветовали бы мне обратить внимание?

— На странное поведение собаки в ночь преступления.

— Собаки? Но она никак себя не вела!

— Это-то и странно, — сказал Холмс.

Артур Конан Дойл

Когда художник думает о симметрии, он думает о бесконечных возможностях, снежинках, алмазах или отражениях в пруду. Когда физик думает о симметрии, он думает о бесконечных невозможностях. Физику движут не открытия того, что происходит, а открытия того, что не происходит. Вселенная огромна, и опыт учит нас, что всё, что может случиться, случается. Порядок же во Вселенной определяется тем фактом, что мы с полной уверенностью можем утверждать, что некоторые события никогда не произойдут. Две звезды в одной галактике могут столкнуться лишь один раз за миллион лет. Но если мы будем наблюдать миллиарды галактик, то зафиксируем несколько тысяч столкновений звёзд в год в видимой части Вселенной. С другой стороны, можно прождать десять миллиардов лет, но так никогда и не увидеть, как мяч на Земле падает вверх. Это и есть порядок. Симметрия является наиболее важным концептуальным инструментом современной физики именно потому, что она позволяет определить, какие из событий никогда не могут произойти.

Симметрии в природе служат для физиков перилами на горной тропинке: во-первых, они ограничивают круг возможных явлений, а во-вторых, указывают правильный путь для их описания. Что мы имеем в виду, когда говорим, что что-то обладает такой-то симметрией? Возьмём, например, снежинку. Она обладает, говоря математическим языком, гексагональной симметрией. Это означает, что снежинку можно повернуть в шесть различных положений, в которых повёрнутая снежинка будет неотличима от неповёрнутой. Ничего не меняется.

Теперь рассмотрим более экстремальный, но уже знакомый нам пример: сферического коня. Почему сферического? Потому что сфера — это самая симметричная вещь из всех, которые можно себе вообразить. Сферу можно поворачивать как угодно: относительно любой оси, на любой угол, её можно даже отразить в зеркале, но она будет выглядеть точно так же, как и до вращения или отражения. Ничего не меняется! Но что это нам даёт? Поскольку никакой поворот или отражение никак не отражается на сфере, для её описания нам оказывается достаточно одной переменной — её радиуса. Таким образом, для изучения любых изменений, которые могут происходить со сферой, нам необходимо менять всего лишь один параметр. Обобщая вышесказанное: чем большим количеством симметрии обладает объект, тем меньше параметров необходимо для его полного описания.

Сложно переоценить важность этого свойства симметрии, и я подробнее расскажу о нём позже. Сейчас же обсудим вопрос, как из наличия симметрии следует запрет чего-либо. Одно из наиболее важных свойств нашего мира, на которое обратил внимание недоумевающего Ватсона Шерлок Холмс, заключается в том, что некоторые вещи в нём никогда не происходят. Мяч никогда не начинает сам по себе скакать по лестнице на второй этаж или катиться вверх по пандусу. Наполненный водой чайник никогда не закипит сам по себе, маятник никогда не поднимется выше, чем он поднимался на предыдущем периоде колебаний. Все эти запреты являются следствиями наличия в природе определённых симметрии.

Понимание этого факта выкристаллизовалось в конце XVIII — начале XIX века из классических работ по математической физике француза Жозефа Луи Лагранжа и англичанина Уильяма Роуэна Гамильтона, создавших обобщённое математическое описание ньютоновской механики. Плодами их трудов воспользовалась в начале XX века немецкая женщина — талантливый математик Эмми Нётер. К сожалению, её острый интеллект не облегчил ей жизнь в обществе — после прихода в 1933 году к власти нацистов она была изгнана с математического факультета Гёттингенского университета, несмотря на заступничество величайшего математика того времени Давида Гильберта. Он безуспешно пытался убедить университетское начальство, что наука не знает национальностей и рас, но руководители университета предпочли проявить лояльность к новой власти.

В теореме, носящей имя Нётер, содержится математический результат, имеющий глубокое фундаментальное значение для всей физики. Переформулированная на языке физики, теорема Нётер гласит следующее: если уравнения, описывающие динамическое поведение физической системы, не изменяются при каких-то преобразованиях этой системы, то для каждого такого преобразования должна существовать физическая величина, которая в этой системе сохраняется с течением времени.

Эта теорема сильно упрощает объяснение некоторых вещей, понятное изложение которых наталкивается на большие трудности у популяризаторов науки и даже у отдельных авторов учебников, поскольку она позволяет легко и просто доказать, почему какие-то явления невозможны.

Рассмотрим, например, вечный двигатель, так часто изобретаемый сумасшедшими учёными. Как я уже рассказывал в главе 1, такие машины могут иметь чрезвычайно сложное устройство, что позволяет запудривать мозги легковерным инвесторам.

Стандартным объяснением, почему подобные машины не могут работать, является отсылка к закону сохранения энергии. Большинство людей имеют достаточно чёткое интуитивное представление об энергии, поэтому мы можем легко объяснить им причину невозможности такой машины.

Вспомните рисунок машины, который я приводил в первой главе. Как я тогда объяснял, после совершения полного цикла все детали машины должны встать на те же самые места и вернуться в те же самые положения, в которых они были в начале. Если машина в начале цикла была неподвижна, она должна быть неподвижной и в конце, в противном случае энергия машины в конце цикла будет больше её энергии в начале. Энергия не берётся из ниоткуда, и если общая энергия машины не изменилась, то она не могла произвести никакой работы.

Но наиболее упёртые изобретатели могли бы возразить: «Почему вы так уверены в законе сохранения энергии? Что делает этот закон таким особенным, что он не может быть нарушен? Да, все известные эксперименты подтверждают закон сохранения энергии, но с чего вы решили, что поставили все возможные эксперименты? Эйнштейна тоже поначалу считали сумасшедшим!»

В этом возражении есть глубокий смысл. Мы не должны ничего принимать на веру. Все учебники убеждают студентов в том, что энергия сохраняется, причём некоторые делают это даже заглавными буквами и полужирным шрифтом. И мы начинаем верить в то, что это фундаментальный закон и что он справедлив для всех видов энергии. Но редко кто пытается объяснить студенту, почему энергия должна сохраняться. Эмми Нётер даёт на этот вопрос очень простой ответ, и мне досадно, что многие преподаватели не идут дальше простой констатации закона сохранения. Если не объяснять человеку, откуда берутся те или иные физические законы, он начинает представлять себе физику как некий свод сакральных правил, понимание которых доступно только посвящённым.

Так почему же энергия сохраняется? Теорема Нётер говорит нам, что это должно быть как-то связано с одной из симметрии природы. Я напомню вам, что смысл симметрии состоит в том, что если мы выполняем какое-то преобразование, то после него всё по-прежнему выглядит так же, как и до преобразования. Так вот, закон сохранения энергии связан с одной очень важной симметрией, которая делает возможным существование физики. Мы считаем, что законы природы будет завтра такими же, как сегодня, а сегодня они такие же, как были вчера. Если бы это было не так, нам пришлось бы иметь разные законы физики на каждый день недели.