Страх физики — страница 33 из 43

* * *

Поиск симметрии является мощным движителем физики. Действительно, все скрытые реальности, о которых пойдёт речь в последней главе, связаны с различными симметриями Вселенной. Те симметрии, которые я уже описал, относящиеся к сохранению энергии и импульса, называются пространственно-временными симметриями по той очевидной причине, что они отражают неизменность физических законов относительно пространства и времени и тем самым отличаются от прочих симметрии. Пространственно-временные симметрии неразрывно связаны со специальной теорией относительности, которая, объединяя пространство и время, связывает их в единый пространственно-временной континуум, что приводит к появлению новых симметрии, отсутствующих при рассмотрении пространства и времени по отдельности. Одной из таких новых пространственно-временных симметрии является инвариантность скорости света.

Инвариантность законов физики относительно перехода из одной движущейся системы в другую в теории относительности достигается путём установления новых отношений между пространством и временем. Новая, четырёхмерная, пространственно-временная «длина» остаётся неизменной при переходе от равномерно движущейся системы к неподвижной, так же как обычная трёхмерная длина остаётся неизменной при повороте. Эта новая симметрия возможна только в том случае, если пространство и время связаны друг с другом. Таким образом, вместо чистого сдвига в пространстве и чистого сдвига во времени, инвариантность которых отвечает за сохранение импульса и сохранение энергии, мы должны ввести что-то новое, сохраняющее инвариантность при сдвиге в четырёхмерном пространстве-времени.

Таким образом, в теории относительности сохранение энергии и сохранение импульса оказываются не отдельными независимыми законами, а соединяются в новый единый закон сохранения энергии-импульса. Сохранение этой новой величины, требующей переопределения прежних понятий энергии и импульса, использовавшихся в теории Ньютона, является следствием новой симметрии, в которой пространство и время связаны друг с другом. В этом смысле специальная теория относительности сообщает нам нечто новое: пространство-время таково, что мы не можем обеспечить сохранение энергии без сохранения импульса, и наоборот.

Существует ещё одна пространственно-временная симметрия, о которой я пока упомянул только вскользь. Она связана с симметрией, приводящей к сохранению энергии-импульса в специальной теории относительности, но гораздо лучше знакома нам, поскольку проявляется и в трёхмерном пространстве. Это симметрия относительно вращения.

Я уже описывал ситуацию, в которой различные наблюдатели видят различную длину проекции линейки, в зависимости от того, как эта линейка повёрнута относительно экрана, но при этом длина самой линейки остаётся неизменной. Независимость физических законов от того, в какую сторону повёрнута лаборатория, является проявлением этой важнейшей симметрии природы. Мы не ожидаем, например, что природа предпочитает какое-то одно направление другим. Все направления должны быть равноправны в отношении основных законов природы.

Тот факт, что физические законы инвариантны относительно поворотов, означает, что существует какая-то сохраняющаяся величина, связанная с этой симметрией. Сохранение импульса связано с инвариантностью законов природы относительно сдвига в пространстве, в то время как наша новая величина связана с инвариантностью законов природы относительно поворота на произвольный угол. Эта величина называется моментом импульса, или, для краткости, просто моментом.

Как и сохранение импульса, сохранение момента играет важную роль во всех явлениях от субатомных до космологических масштабов. В любой изолированной системе момент импульса должен сохраняться. Если в описании любого процесса, связанного с сохранением импульса, заменить расстояние на угол, а скорость на угловую скорость, мы получим описание для процесса, связанного с сохранением момента. Это прекрасный пример творческого плагиата.

Ещё один пример. Когда один вагон сталкивается с другим, находящимся в состоянии покоя, и вагоны сцепляются вместе, так что дальше оба вагона движутся как единое целое, они движутся медленнее, чем первый вагон до столкновения. Это классическое следствие сохранения импульса. Суммарный импульс двух сцепленных вагонов должен быть таким же, как и до столкновения. Поскольку совокупная масса сцепки больше, чем масса первого вагона, который двигался, сцепка из двух вагонов должна двигаться медленнее, чем первоначально двигался один вагон.

А теперь рассмотрим фигуристку, вращающуюся вокруг вертикальной оси с прижатыми к телу руками. Когда она расправляет руки, её вращение замедляется, как по мановению волшебной палочки. Этот пример демонстрирует следствие сохранения момента импульса, так же как предыдущий пример демонстрировал следствие сохранения импульса. Продолжая аналогию, можно сказать, что тело большего радиуса ведёт себя в отношении вращения, как тело с большей массой — в отношении движения. Расправляя руки, фигуристка как бы увеличивает радиус своего тела. И подобно тому, как два сцепленных вагона начинают двигаться медленнее, чем до столкновения двигался один, так и фигуристка, увеличивая размах рук, начинает вращаться медленнее, чем она вращалась, прижав руки к телу. И наоборот, начав вращение с раскинутыми в стороны руками, фигуристка может ускорить вращение, прижав руки к телу. Так закон сохранения момента импульса помогает фигуристам завоёвывать олимпийские медали.

В природе есть и другие сохраняющиеся величины, законы сохранения которых возникают из симметрии, отличных от пространственно-временных. К таким величинам относится, например, электрический заряд. Я вернусь к этому позже. Сейчас же попробуем разобраться с ещё одним странным аспектом инвариантности законов природы относительно поворота. Он имеет отношение к одной особенности инвариантности вращения, которая проявляется не всегда. Например, несмотря на то что основные законы движения инвариантны относительно поворота, то есть не существует предпочтительного направления, в котором бы законы выполнялись как-то иначе, чем в остальных, мир относительно поворота не инвариантен. Если бы он был инвариантен, мы не смогли бы дойти даже до продуктового магазина, потому что все направления были бы для нас одинаковыми. Но «лево» выглядит иначе, чем «право», «север» отличается от «юга», «верх» от «низа».

Проще всего объяснить это простым стечением обстоятельств, тем более что так оно и есть. Если бы мы жили в другом месте, то различия между правым и левым, югом и севером были бы для нас совершенно другими. Тем не менее сам факт, что случайное стечение обстоятельств может скрыть от нас фундаментальные симметрии мира, является одной из наиболее важных идей, направляющих развитие современной физики. Чтобы использовать всю мощь таких симметрии, мы должны копать глубже.

Многие из классических примеров скрытой реальности, о которых я рассказывал в предыдущей главе, связаны с идеей, что симметрия может быть скрытой. Эта идея получила настораживающее имя: спонтанное нарушение симметрии, и мы уже столкнулись с подобным нарушением в разнообразных обличиях.

Хорошим примером служит поведение микроскопических «магнитиков» в куске железа, о котором я рассказывал в конце предыдущей главы. При низкой температуре, когда отсутствует внешнее магнитное поле, эти «магнитики», выбирая наиболее энергетически выгодное состояние, выстраиваются в одном направлении, но само направление выбирается случайным образом. В физике электромагнетизма нет ничего, что определяло бы это направление, его нельзя предсказать заранее. Но после того, как направление выбрано, оно приобретает уникальность. Насекомое, чувствительное к магнитным полям, живя внутри такого магнита, будет чувствовать анизотропию своего мира, для него направления на северный полюс магнита и на южный полюс магнита будут выделенными, отличающимися от остальных направлений.

Физический подход позволяет подняться выше случайных, уникальных обстоятельств нашего собственного существования и попытаться выглянуть за их пределы. Во всех известных мне случаях это предполагает поиск истинной симметрии мира. В приведённом выше примере это будет означать, что уравнения, описывающие магнитное поле, должны быть инвариантны относительно поворота, то есть они не должны меняться в случае изменения направления магнитного поля.

Аналогичная ситуация возникает при объединении электромагнитных и слабых взаимодействий. Лежащая в основе электрослабой теории физика не делает различий между безмассовыми фотонами и очень массивными Z-бозонами. В действительности, существует глубоко запрятанная симметрия, при которой Z-бозон можно заменить на фотон, и всё будет выглядеть точно так же. В мире же, в котором мы живём, у описывающих эти частицы фундаментальных уравнений существуют конкретные решения, содержащие конденсат виртуальных частиц, заполняющий пустое пространство, взаимодействуя с которым фотон и Z-бозон ведут себя совершенно по-разному.

На языке математики эти результаты можно изложить следующим образом: конкретное решение математического уравнения не обязано сохранять инвариантность относительно тех преобразований, для которых являются инвариантными сами исходные уравнения. Любые конкретные реализации базовой математической модели, например описание реального окружающего нас физического мира, могут нарушать связанную с этой моделью симметрию. Рассмотрим прекрасный пример спонтанного нарушения симметрии, предложенный физиком Абдусом Саламом, одним из лауреатов Нобелевской премии за объединение электромагнитного и слабого взаимодействия.

Представьте себе полностью симметричный сервированный круглый обеденный стол. Между тарелками на этом столе стоят рюмки, причём расстояние от каждой рюмки до правой тарелки равно расстоянию до левой тарелки. Ничто, кроме правил этикета (которые я никак не могу запомнить), не указывает на то, какую рюмку следует выбрать: правую или левую. Но как только кто-нибудь один из гостей делает свой выбор, скажем берёт левую рюмку, все остальные оказываются вынужденными последовать его примеру, в противном случае у кого-то из гостей окажется две рюмки, а у кого-то — ни одной. В отношении реального физического мира можно сказать, что мы случайным образом оказались в какой-то одной из огромного количества его возможных реализаций. Перефразируя Руссо: мир был рождён свободным, но он повсюду скован цепями!