Почему же нас должны волновать существующие в природе симметрии, даже те, которые не проявляются явно в нашем мире? Может быть, тяга к симметриям — это всего лишь извращённая потребность физиков испытывать странное эстетическое удовольствие от подобной интеллектуальной мастурбации? Частично да. Но есть ещё одна причина. Симметрии, даже те, которые непосредственно не проявляются, позволяют полностью определить набор физических величин, необходимых для описания природы, и динамические отношения между этими величинами. Короче, вся физика может в итоге оказаться не более как набором симметрии и больше ничем.
Возьмём, к примеру, энергию и импульс, сохранение которых является прямым следствием двух пространственно-временных симметрии. Эти две симметрии достаточны для описания движения тел в гравитационном поле Земли, полностью эквивалентного описанию, получающемуся на основании законов Ньютона. Вся динамика, например тот факт, что сила приводит к ускорению, следует из этих двух симметрии. Симметрии даже определяют характер фундаментальных взаимодействий, о чём я скоро расскажу.
Симметрия говорит нам, какие переменные необходимы для описания мира. Как только список переменных определён, построение теории остаётся делом техники. Возьмём снова моего любимого сферического коня. Представляя коня в виде сферы, я ограничиваю круг тех физических процессов, которые буду рассматривать, только теми, которые зависят исключительно от расстояния до центра коня и больше ни от чего. Всё, что явно зависит от направления, должно быть удалено из описания, поскольку все направления из центра для сферы идентичны. Совершенная симметрия сферы превратила задачу с потенциально большим количеством параметров в задачу с единственной переменной — радиусом.
Можно подойти с другой стороны. Если бы мы сумели выделить переменные, необходимые для надлежащего описания какого-то физического процесса, то затем, если мы достаточно умны, мы могли бы попробовать угадать, какие внутренние симметрии связаны с этими переменными. Эти симметрии, в свою очередь, могли бы помочь нам сформулировать все законы, отвечающие за процесс. Вспомним Галилея. Он показал, что изучение того, как движется тело, помогает понять, почему оно движется. Определения скорости и ускорения позволяют понять, что нам нужно для описания динамики движущихся тел. Теперь же мы просто делаем следующий шаг, предполагая, что изучаемые законы не просто становятся более понятными, когда мы ограничиваем число входящих в них переменных, но что этих выбранных переменных оказывается достаточно, для того чтобы построить полное описание явления.
Вернёмся к фейнмановской аллегории природы как больших шахмат, в которые играют боги, за игрой которых мы имеем честь наблюдать. Правила игры мы называем фундаментальными законами физики, и наша цель — понять эти правила. Фейнман утверждал, что понимание этих правил — это всё, на что мы имеем право надеяться, собираясь понять природу. Но я думаю, сегодня мы имеем право претендовать на ещё один шаг вперёд. Мы подозреваем, что эти правила могут быть полностью установлены путём простого изучения симметрии «фигур» и «доски». Таким образом, чтобы понять природу, то есть чтобы понять правила игры, достаточно понять её симметрию.
Это очень сильное утверждение и вместе с тем очень общее. Я предполагаю, что вы сейчас испытываете одновременно скепсис и растерянность, поэтому приведу несколько примеров, которые помогут прояснить ситуацию. В процессе я надеюсь дать некоторое представление о том, как физика расширяет свои границы.
Итак, вернёмся к фейнмановской аналогии. Шахматная доска представляет собой довольно симметричный объект. Узор доски переходит сам в себя при пространственной трансляции. Клетки доски окрашены в два цвета, и, если мы поменяем цвета местами, узор останется тем же самым. Кроме того, доску размером 8×8 можно разделить на две половины, и если потом эти половины поменять местами, то внешний вид доски тоже не изменится.
Одной этой симметрии ещё недостаточно, чтобы установить правила шахматной игры, потому что на той же самой доске можно играть, например, в шашки. Однако если к указанной симметрии добавить факт наличия на доске тридцати двух фигур, разделённых на два множества, в каждом из которых есть восемь одинаковых фигур (пешки), три парные фигуры (кони, слоны и ладьи) и две уникальные (ферзь и король), произвол в определении правил уменьшится. Например, можно подметить зеркальную симметрию в расположении ладей, коней и слонов, которые стоят симметрично относительно центральной линии. Противоположные цвета фигур противников напоминают о противоположных цветах разных клеток доски. Кроме того, набор ходов всех шахматных фигур согласуется с простым набором движений, допускаемых структурой доски. Движение слона, ходящего только по диагонали, ограничивается возможностью двигаться только по клеткам одного цвета. Пешка может «взять» другую фигуру, только если та находится на клетке того же цвета по диагонали от пешки, и так далее. Я никоим образом не утверждаю, что правила шахматной игры полностью определяются симметрией доски и фигур; стоит отметить, что, хотя ФИДЕ признаёт только один вариант игры, в пределах описанных симметрии существует множество её неофициальных вариаций
Можно задаться аналогичным вопросом относительно любого другого вида спорта. Остались бы правила футбола теми же самыми, если бы игроки играли не на 100-метровом, а на 10-метровом поле? Как зависят правила от симметрии в отношении играющих команд? Или, например, что будет, если поле для игры в бейсбол будет иметь форму пятиугольника? Потребуется ли вам четыре «аута»?
А если не ограничиваться только видами спорта? Насколько сильно зависят законы страны от структуры законодательного органа? Или вот многие беспокоятся о величине военных расходов. Насколько структура оборонного бюджета определяется структурой вооружённых сил, состоящих из ВВС, армии, флота и морской пехоты?
Возвращаясь к физике, я хочу продемонстрировать, как симметрия, даже неявная, позволяет устанавливать формы физических законов. А начну я с одного закона сохранения, который мы ещё не обсуждали, но который играет важную роль в физике, — с закона сохранения электрического заряда. Все известные нам процессы в природе идут с сохранением электрического заряда, то есть если в начале процесса мы имеем один элементарный отрицательный заряд, то, независимо от того, насколько сложен этот процесс, в его конце останется один элементарный отрицательный заряд. В промежутке между началом и концом может рождаться и уничтожаться множество заряженных частиц, но при рождении и уничтожении частиц электрические заряды возникают только попарно: положительный и отрицательный, и также попарно уничтожаются, чтобы суммарный заряд в начале процесса был равен суммарному заряду в конце.
Предположив, основываясь на теореме Нётер, что любой универсальный закон сохранения является следствием соответствующей универсальной симметрии, мы могли бы превратить все положительные заряды в мире в отрицательные, а отрицательные в положительные, и ничего при этом не должно было бы измениться. Но это эквивалентно заявлению, что названия положительных и отрицательных зарядов являются результатом произвольного соглашения: мы просто договорились называть заряд электрона отрицательным, а заряд протона положительным.
В самом деле, симметрия, ответственная за сохранение заряда, схожа с пространственно-временной симметрией, которая уже обсуждалась в связи с общей теорией относительности. Если, например, мы одновременно изменим все линейки во Вселенной, так чтобы прежнее расстояние в 1 см соответствовало новому расстоянию в 2 см, то мы вправе ожидать, что законы физики будут выглядеть точно так же, как и раньше, с единственной разницей, что нам придётся изменить численные значения фундаментальных констант, чтобы они соответствовали новому масштабу. Это эквивалентно использованию для описания физических процессов разных систем единиц. Мы можем использовать мили и фунты, принятые в США, или же метрическую систему, принятую в цивилизованном мире. Кроме неудобства перевода одних единиц в другие, никаких других изменений во Вселенной это не вызовет.
Но что произойдёт, если я потребую, чтобы длина линейки изменялась при её перемещении в пространстве? Ну… Эйнштейн обещает нам, что ничего плохого не случится. Это просто означает, что законы, управляющие движением частиц в таком мире, будут учитывать наличие гравитационных полей.
Общая теория относительности говорит нам, что есть такая общая симметрия, которая позволяет нам изменять определение длины от точки к точке, но с условием, что мы соглашаемся с существованием такой вещи, как гравитационное поле. В этом случае мы можем компенсировать локальные изменения длины наличием гравитационного поля. С другой стороны, если мы находим такое глобальное описание, в котором длина от точки к точке остаётся неизменной, то это говорит нам об отсутствии гравитационного поля. Эта симметрия называется общекоординатной инвариантностью, и она полностью определяет теорию, называемую общей теорией относительности. Общекоординатная инвариантность означает, что система координат, которую мы используем для описания пространства и времени, сама по себе может быть произвольной, так же как могут быть произвольными единицы, используемые для измерения расстояния. Но между этими случаями имеется принципиальная разница. Разные системы координат могут быть эквивалентны, только если преобразование между ними производится локально, то есть если эталон длины плавно изменяется от точки к точке. Такое преобразование требует введения для некоторых наблюдателей гравитационного поля, чтобы предсказания движений тел оставались для них одними и теми же.
Дело тут в следующем: в странном мире, в котором определение длины изменяется от точки к точке, траектория тела, движущегося в отсутствие внешних сил, будет искривлённой. Помните пример с самолётом, летящим по кратчайшему пути? Его траектория при проекции на плоскую карту будет выглядеть кривой линией. Для того чтобы согласовать такое движение с классической механикой, необходимо ввести в плоской системе координат дополнительную силу, которая сворачивает самолёт с прямого пути. В искривлённом четырёхмерном пространстве-времени эта сила и есть сила тяжести. Другими словами, в общей теории относительности гравитация является следствием общекоординатной инвариантности природы.