[274]. «Геномные войны» закончились победой науки, а за ней последовало интересное продолжение.
В 2005 году был опубликован геном нашего ближайшего родственника — шимпанзе[275]. Тогда подтвердилось, что на молекулярно-генетическом уровне мы с шимпанзе очень похожи. Например, 29% белков, кодируемых генами шимпанзе и человека, идентичны, то есть не отличаются даже одной аминокислотой, а типичный белок человека отличается от аналогичного белка шимпанзе всего лишь одной или двумя аминокислотами. С другой стороны, оказалось, что существуют как гены, утраченные шимпанзе, так и гены, утраченные людьми в процессе нашей эволюции от общего предка. Но в целом, как уже упоминалось, ДНК человека и ДНК шимпанзе тожественны на 98,76%[88], а если говорить только про те участки, которые кодируют работающие белки, то сходства еще больше. Большинство хромосом человека практически идентичны хромосомам шимпанзе[276], но есть одно весьма занимательное отличие.
У шимпанзе (а также у гориллы и орангутанга) 48 хромосом, а у человека — 46[277]. «Куда же делись еще одна пара хромосом и расположенные на ней гены?» — спросите вы. Поскольку геномы человека и шимпанзе полностью прочитаны, мы можем ответить на этот вопрос очень точно. Для каждого гена шимпанзе мы можем найти похожий (гомологичный) ген человека и посмотреть, на какой хромосоме он расположен. Такой анализ показывает, что по набору генов каждая хромосома шимпанзе соответствует одной хромосоме человека. Исключениями являются хромосомы 12 и 13 шимпанзе, каждая из которых соответствует разным половинам второй хромосомы человека.
У наших давних предков произошло слияние хромосом, и это одно из наиболее наглядных молекулярно-генетических подтверждений идеи Дарвина о наличии общего предка у человека и шимпанзе. Теория эволюции позволяет правильно предсказать не только состав генов на второй хромосоме человека, но и порядок их расположения. Более того, в предполагаемом месте слияния сохранились остатки теломер, участков, которые обычно расположены на концах хромосом. Наконец, на нашей второй хромосоме имеются следы дополнительной центромеры. Центромеры — это особые участки ДНК, с которыми связываются микротрубочки, чтобы растащить хромосомы к разным полюсам клетки перед ее делением. Это обеспечивает одинаковый хромосомный состав дочерних клеток. Обычно у хромосом одна центромера.
Кто-то скажет: но ведь никто не видел эволюцию человека! Значит, мы не можем знать наверняка, был ли у нас с шимпанзе общий предок, а теории эволюционистов — такая же вера, как вера в божественное сотворение человека. Ошибочность подобных рассуждений продемонстрировать очень легко. Представьте, что было совершено убийство. Никто из живущих не видел преступления, но у нас есть отпечатки пальцев преступника на предполагаемом орудии убийства и результаты анализа ДНК, следы ботинок рядом с местом преступления. Все факты указывают на одного-единственного человека, у которого отсутствует алиби. Понятно, что ни в одном суде при наличии столь убедительных объективных доказательств вины аргумент адвоката, что «никто же не видел преступления», не пройдет. Современные данные по чтению полных геномов живых организмов позволяют реконструировать процесс эволюции не хуже, чем методы криминалистики позволяют реконструировать способ и обстоятельства убийства.
К началу 2015 года было опубликовано более пятисот полных геномов эукариот, тысячи полных геномов бактерий, тысячи полных геномов вирусов. Этот взрывоподобный рост количества генетических данных был связан с появлением методов чтения ДНК нового поколения. Именно благодаря этим методам геном человека (или аналогичный по размерам геном) сейчас можно прочитать всего за несколько тысяч долларов.
Из множества методов чтения ДНК нового поколения мы рассмотрим только одну технологию, которую можно просто и понятно описать. В 2008 году исследователи из компании Pacific Biosciences опубликовали в журнале Science статью под названием «Чтение ДНК в реальном времени с использованием одиночных ДНК-полимераз»[278]. Этот метод основан на том, что ученые научились «подсматривать» за ДНК-полимеразой прямо в процессе удвоения молекулы ДНК.
Для того чтобы визуализировать активность ДНК-полимеразы, к каждому из четырех типов нуклеотидов приделывается метка определенного цвета. Например, нуклеотид А можно пометить зеленой флуоресцентной меткой, G — желтой и так далее. Ровно одна молекула ДНК-полимеразы помещается в нанофотонную камеру для визуализации. Это цилиндрическая камера шириной около семидесяти нанометров. Пучок света освещает небольшую часть этой камеры, объемом всего в 20 X 10-21 литра, с полимеразой внутри. Нуклеотиды диффундируют в освещенную область камеры и из нее, как правило не задерживаясь надолго внутри, а очень чувствительный прибор фиксирует флуоресценцию в камере. Когда правильный нуклеотид связывается с полимеразой, она хватает его и удерживает, ведь полимеразе нужно время, чтобы присоединить нуклеотид. Благодаря этому правильный нуклеотид проводит больше времени в камере, что приводит к более длительному и сильному световому сигналу, существенно отличающемуся от «шума». Этот сигнал и фиксирует прибор. После присоединения нуклеотида метка отваливается и уплывает из камеры. В итоге прибор видит последовательные вспышки четырех цветов, соответствующие четырем типам нуклеотидов, и по этим вспышкам восстанавливается последовательность анализируемой молекулы ДНК.
Сегодня приборы для чтения ДНК становятся все лучше и дешевле. Уже начали появляться карманные устройства[279], позволяющие читать такие молекулы. Подобные технологии могут помочь полевым лабораториям быстро устанавливать наличие опасных возбудителей заболеваний прямо на месте. Кроме того, они помогают развитию персонализированной медицины — использованию знаний об индивидуальных генетических особенностях человека для прогнозирования и диагностики заболеваний, а также для оптимального выбора лекарственных препаратов.
Помните, как актриса Анджелина Джоли решила сделать мастэктомию, чтобы предотвратить развитие рака молочной железы? От этого заболевания погибли ее мать, бабушка и тетя, поэтому опасения актрисы за собственное здоровье были небезосновательны. Генетический анализ подтвердил худшие ожидания — наличие вредной мутации в гене BRCAi. Некоторые мутации в этом гене могут приводить к очень высокому риску рака груди (вплоть до 80–90% вероятности в течение жизни) и рака яичников (с вероятностью до 40–50%). Это не гарантированный приговор, но, взвесив все «за» и «против» (в том числе возможность получить высококачественное протезирование груди), Джоли пошла на столь необычный шаг. В большинстве случаев носителям мутаций, чреватых склонностью к тому или иному виду рака, по результатам генетических тестов рекомендуют проходить регулярные обследования у врача, чтобы успеть обнаружить заболевание на ранних стадиях развития (если оно возникнет).
Если говорить о персонализированном подборе лекарств[280], то рассмотрим роль гена, кодирующего цитохром P450 2D6. Этот важный фермент работает прежде всего в печени, где он метаболизирует многие несвойственные нашему телу вещества, в том числе и некоторые лекарства (например, галоперидол и ряд других антипсихотиков). В частности, цитохром P450 превращает кодеин в морфин. У людей встречаются разные варианты цитохрома — более активные и менее активные. Если лекарство метаболизируется в более слабое по воздействию вещество, то на пациента с активным цитохромом препарат будет действовать менее эффективно. Пациенты с менее активным цитохромом в этом случае испытают больше побочных эффектов. Если лекарство метаболизируется в более сильнодействующее вещество, то ситуация будет обратной. Врачу, назначающему лекарство, имеет смысл учесть генетические особенности пациента при подборе препарата и расчете оптимальных дозировок.
Но речь идет не только о медицинских препаратах, а даже и о продуктах повседневного потребления. Существует еще один цитохром CYP1A2, отвечающий за метаболизм кофеина. У некоторых людей этот ген работает плохо или выключен совсем. При употреблении четырех и более чашек кофе в день у таких людей существенно увеличивается риск возникновения сердечно-сосудистых заболеваний, в среднем на 64%[281]. У людей с исправной копией гена потребление большого количества кофе почти не влияет на этот риск. Когда ученый Крейг Вентер прочитал свой собственный геном, он узнал, что у него целых две хороших копии этого гена, а значит, свой любимый кофе он может и дальше пить спокойно, в больших количествах, как и раньше.
Похожая история с употреблением алкоголя. Фермент алкогольдегидрогеназа метаболизирует этиловый спирт. Среди людей распространены две версии этого гена: кодирующие «быстрый» и «медленный» вариант фермента. У человека с «быстрым» ферментом этиловый спирт метаболизируется эффективно, поэтому у него менее выражено опьяняющее действие алкоголя, но быстро происходит накопление токсичного продукта метаболизма этанола — ацетальдегида. Накопление ацетальдегида приводит к неприятным ощущениям, ряду признаков похмелья и, кроме того, к характерному покраснению лица вскоре после принятия алкоголя. Как следствие, люди с «быстрым» вариантом фермента алкогольдегидрогеназы получают меньше удовольствия от алкогольных напитков, в среднем пьют меньше[282] и реже страдают от алкоголизма[283]