Супермухи. Удивительные истории из жизни самых успешных в мире насекомых — страница 7 из 61

Даже учитывая все механизмы для подъема, мухи не ушли бы далеко без баланса и рулевого управления. Система равновесия человека, в отличие от мухи, находится в ушах. Мухи балансируют и управляют жужжальцами и рудиментами второй пары крыльев, которые я упоминал ранее. Во время полета жужжальца двигаются как барабанные палочки: бьют с той же скоростью, что и крылья, но, как правило, в противофазе. Они действуют как гироскопы, качаясь вверх, когда крылья опускаются, и наоборот. Если муха отклоняется от курса, переворачивается или меняет высоту во время полета, жужжальца изгибаются у основания, при этом сохраняя первоначальную плоскость движения. Специальные нервные клетки улавливают повороты[51], позволяя мухе корректировать ориентацию.

Несмотря на название отряда Двукрылых, у некоторых мух вообще нет крыльев. У их предков они были, но, подобно нелетающим птицам на островах, где нет хищников, мухи утратили крылья, поскольку на протяжении многих поколений образ жизни сделал их наличие совершенно бессмысленным и даже излишним. Показательный пример: паразитирующие на летучих мышах мухи-кровососки. Если всю свою жизнь вы проводите, ползая, как краб, по телу летучей мыши, вам не нужно самостоятельно взлетать, чтобы добраться из одного места в другое, за вас это сделают летучие мыши. Перебраться с одного хозяина на другого можно в тот момент, когда летучие мыши собираются вместе и сидят, плотно прижавшись друг к другу, как они довольно часто делают. Итак, мух-кровососк, паразитирующих на летучих мышах (стреблид и мух-паучниц или никтерибиид), насчитывается – что не может не удивлять – 511 известных видов в двух семействах, и они постепенно теряли крылья на протяжении тысячелетий. Я видел некоторых из них, изучая летучих мышей, когда учился в университете, и, если бы мне никто не сказал, я бы никогда не подумал, что это мухи.

Если вы задавались вопросом о способности мух преодолевать гравитацию и ходить по окнам и потолку, то это возможно благодаря двум или трем подушечкам на каждой лапке, называемым пульвиллами. От каждой из них отходят тысячи трубочек, заканчивающихся очень гладкой плоской подушечкой. Когда-то считалось, что пульвиллы работают как присоски, но сейчас известно, что они похожи скорее на липучки. Крошечные капли клейкого вещества, состоящего из сахаров и масел, просачиваются через эти трубочки, и муха прикрепляется даже к самой гладкой поверхности благодаря силе молекулярного притяжения. Муха ходит, меняя угол наклона подушечек лап, чтобы ослабить фиксацию[52]. Домовые гекконы используют тот же трюк, охотясь на насекомых и бегая по стенам и потолкам.

Быстрота мух и их наглость, с которой они не двигаются с места или тут же возвращаются, несмотря на наши усилия отогнать их, отчасти объясняются использованием тех самых щетинок и волосков, о которых мы узнали во время нашего визита к Марку Дейрупу. Основание каждого фолликула иннервировано, это делает муху чувствительной к мельчайшим изменениям воздушного потока. Такая система раннего предупреждения помогает мухе обнаружить приближающегося врага[53], и это объясняет, почему муху так трудно прихлопнуть.

Когда ученые внимательно изучили, как летают комары, то обнаружили кое-что новое. При помощи восьми камер замедленной съемки удалось рассмотреть полет под различными углами и создать трехмерную модель движений крыльев писклявого насекомого, степень подвижности которых ничтожные 40°, что почти вдвое меньше, чем у пчелы. Этого поверхностного движения должно быть недостаточно, чтобы комар летал, используя только разгонный вихрь (воздушный карман, который помогает создавать подъемную силу). Благодаря камерам удалось разглядеть второй вихрь на задней части крыльев. Поскольку задняя линия крыла повторяет траекторию передней, она улавливает вихревой след предыдущего взмаха, повторно используя энергию. Это обеспечивает дополнительный подъем, за счет которого комар и доставляет нам неприятности. Благодаря второму вихрю энергия экономится за счет уменьшения размера траектории, которую должно пройти каждое крыло. При скорости 700 ударов в секунду это дает значительную экономию.

Полеты с высоким КПД позволяют мухам мигрировать на удивительно далекие расстояния, как, например, мармеладная муха-журчалка. Миллионы таких мух дважды в год пролетают над швейцарскими Альпами во время путешествия туда и обратно из Северной в Южную Европу. Основываясь на наблюдениях за массовыми миграциями насекомых с воздуха, английский генетик из Университета Эксетера Карл Уоттон предположил, что миллиарды журчалок различных видов ежегодно мигрируют по всей Европе нескончаемым потоком крошечных тел, сверкающих на фоне гор. При попутном ветре они летят высоко, при встречном – низко. «Они летят быстро… и не останавливаются, – говорит Уоттон. – Бабочки снуют по кругу, как в барабане стиральной машины, но журчалки просто пролетают прямо над нами»[54].

Датчики движения

Картинка в поле зрения летающих организмов меняется очень быстро, поэтому хорошее зрение им необходимо, за исключением разве что летучих мышей, обладающих эхолокацией. Глаз насекомого существенного отличается от нашего. Глаз позвоночного состоит из одной секции, а у насекомого – из многочисленных фасеток, вместе составляющих шестиугольники, напоминающие соты. Каждая фасетка, или омматидий, – полностью функционирующий орган зрения, независимо посылающий сигнал в мозг. Фасетки глаз насекомого обладают шириной обычно около 10 мкм, то есть на булавочной головке одновременно их уместится около 20 000.

Такая структура предполагает, что то, что видит насекомое, представляет собой мозаику из взаимосвязанных маленьких изображений. Да, именно так было написано в учебнике по энтомологии для студентов, где приводилась схематичная иллюстрация. Это была довольно расплывчатая картинка в стиле пуантилизма, заставившая меня задуматься о необходимости шлема на случай, если мне придется лететь по жизни с таким плохим зрением. Однако, судя по поведению насекомых, включая мух, кажется, что видят они куда лучше, и сейчас уже достоверно известно, что мозг насекомых интегрирует отдельные сигналы от каждого омматидия в одно целое точно так же, как наш мозг объединяет изображения из наших двух глаз в одно. Сложный глаз насекомого[55] послужил источником вдохновения для исследований и разработки камер видеонаблюдения с датчиком движения, которыми пользуются военные.

У мух есть группы нейронов, работающие согласованно, и они прекрасно справляются с проблемами со зрением на клеточном уровне. Чувствительные к движению нейроны отслеживают оптический поток объектов, перемещающихся в поле зрения мухи, помогая ей поддерживать курс полета. Другой набор нейронов использует оптический поток для контроля самопроизвольных движений. Третий набор нейронов, по-видимому, анализирует визуальное содержание ситуации, например отделяет фигуры от фона путем обнаружения относительного движения среды. Этот процесс называется параллаксом движения. Три однофасеточных глазка, светочувствительных органа, расположенные на макушке головы и полностью отделенные от глаз, улавливают изменения интенсивности света, и муха быстро реагирует на приближение объекта.

У многих мух есть более приземленный способ справиться с потоком зрительной информации, вызванным быстрым полетом: они бросают несколько быстрых косых взглядов. Например, синие падальницы, или синие мясные мухи, перемещают взгляд благодаря быстрым, прерывистым поворотам тела и головы (саккадам), удерживая его более или менее неподвижным между саккадами. (Наши с вами зрительные органы производят подобные саккады[56], когда мы смотрим в окно движущегося автомобиля или бежим; глаза ненадолго фиксируются на ближайшем объекте, затем переходят к другому, при этом глаз совершает быстрое движение из стороны в сторону.) Из-за быстрых движений поток зрительной информации между саккадами проходит почти плавно и поступательно, и муха получает информацию о пространственном расположении объектов окружающей среды. Я помню, как испытал легкое волнение, когда в первый раз заметил, что муха внезапно посмотрела в сторону. Взгляд показался мне таким целеустремленным, я даже не удивился бы, если от ее взгляда проезжающие машины остановились бы как вкопанные.

Исследования плодовых мушек, глаза которых состоят из скромных почти шестисот фасеток каждый, показали, что они используют визуальную систему приоритизации. Статичные объекты остаются размытыми, при этом все движущиеся, независимо от зрительных изменений, вызванных движениями самой мухи, находятся в четком фокусе. Как пишет Питер Воллебен в книге The Inner Life of Animals («Духовный мир животных»): «Можно сказать, что эти крошки видят самую суть вещей, и, конечно, вы не ожидали этой способности от маленьких мух»[57]. Мы делаем почти то же самое. Читая эту книгу, посредством периферийного зрения вы замечаете многое на странице и за ее пределами, но вы не фокусируетесь на этом. Даже слова, находящиеся всего в нескольких сантиметрах от тех, которые вы читаете в данный момент, размыты. То есть наше зрение работает подобно разуму, который в любой конкретный момент может думать только о чем-то одном.

Профессор биоинженерии Калифорнийского технологического института Майкл Дикинсон и аспирант Гвинет Кард рассмотрели изображение плодовых мушек, которых вот-вот должны были прихлопнуть мухобойкой, сделанное в высокоскоростном цифровом режиме. Ученые определили, что крошечный мозг насекомого вычисляет местоположение надвигающейся угрозы, разрабатывает план побега и ставит ноги в оптимальное положение, чтобы отпрыгнуть в сторону. Все это происходит примерно в течение одной десятой доли секунды после того, как муха замечает мухобойку. После тщательно контролируемых экспериментов, снятых замедленной съемкой