Сварочные работы. Практический справочник — страница 10 из 30

Керамические флюсы, в отличие от плавленых, не столь требовательны к кромке свариваемых деталей и конструкций, т. е. они не слишком чувствительны к ржавчине, окалине и влаге, что важно при осуществлении работ под открытым небом.

4. По строению частиц. Различаются флюсы:

– стекловидные;

– пемзовидные;

– цементированные.

5. По степени легирования металла шва. По этому признаку флюсы делятся на:

– активные, которые, в свою очередь, подразделяются на слабо и сильно легирующие металл шва;

– пассивные, т. е. не взаимодействующие с металлом сварочной ванны.

6. По химическому составу. Флюсы бывают:

1) оксидными, в состав которых входят оксиды металлов. Кроме того, содержание фторидных соединений в них может достигать 10 %. По содержанию кремния и марганца флюсы подразделяются на:

– бескремнистые (количество кремнезема не превышает 5 %);

– низкокремнистые (менее 35 % кремнезема);

– высококремнистые (содержание кремнезема составляет 35–50 %);

– безмарганцевые (они имеют в составе менее 1 % марганца);

– марганцевые (на марганец приходится более 1 %), а именно: низко– (менее 10 %), средне– (10–30 %) и высокомарганцевые (более 30 %);

– легированные, которые включают чистые легирующие металлы или ферросплавы;

2) солеоксидными (смешанными), в которых преобладают соли, а не оксиды, как в предыдущей группе. Содержание кремния в них достигает 15–30 %, марганца – 1–9 %, фторида кальция – 12–30 %;

3) солевыми, основную часть в составе которых составляют хлориды и фториды кальция, натрия, бария и др. Они предназначаются для сварки активных металлов.

7. По химической активности. Это важная характеристика флюса, которая определяется по его суммарной окислительной способности. Показатель активности флюса – относительная величина Аф, значение которой варьируется от 0 до 1. По данному признаку различаются флюсы:

– высокоактивные (Аф больше 0,6);

– активные (Аф от 0,3 до 0,6);

– малоактивные (Аф от 0,1 до 0,3);

– пассивные (Аф меньше 0,1).

Для автоматической наплавки под флюсом используются те же составы, что и для сварки. Наибольшее распространение получили плавленые флюсы АН-348 А, АН-20, АН-60, 48-ОФ-6, АН-15 М, АН-25, ОСЦ-45, АН-22, АНФ-6 в комбинации с легированными проволоками.

Защитные газы

Чтобы получить качественный сварной шов при дуговой сварке, необходимо обеспечить защиту расплавленного металла сварочной ванны. Именно с такой целью используются защитные газы. Эта идея была высказана Н. Н. Бенардосом еще в 1883 г. и состояла в том, чтобы направить из сопла горелки на зону сварки струю газа, которая, как будто в оболочку, заключит зону сварки и предохранит ее от постороннего воздействия. Защита осуществляется тремя группами газов:

– инертными;

– активными;

– смесями активных газов с инертными или инертных с инертными.

Инертными называются газы, которые не вступают в химические реакции взаимодействия с металлом и неспособны растворяться в нем. К этой группе относятся аргон, гелий и их смеси, а для меди используется азот. В среде инертных газов сваривают активные металлы, например титан, алюминий и др. Применяют их и в тех случаях, когда хотят добиться высококачественного шва при соединении изделий и конструкций из хромоникелевых сталей.

Аргон представляет собой газ со следующими физическими характеристиками:

– бесцветный;

– без запаха и вкуса;

– неядовитый;

– невзрывоопасный.

Поскольку аргон примерно в 1,5 раза тяжелее воздуха, если производить сварочные работы в закрытом и непроветриваемом помещении, тогда возникает опасность удушья. В природе он встречается исключительно в свободном виде, его объемная концентрация в воздухе составляет приблизительно 0,93 %.

В промышленности в соответствии с ГОСТом 1015779 производится аргон трех сортов:

– высшего (доля аргона – 99,993 %);

– первого (99,987 %);

– второго (99,95 %).

Аргон транспортируется в жидком (плотность – 1392 кг/м3) или газообразном (плотность – 1,662 кг/м3) состоянии в специальных стальных баллонах объемом 40 л под давлением 15 МПа. Емкости окрашены в серый цвет с зеленой полосой. На них зеленой краской нанесена надпись «Аргон чистый».

Расход газа при сварке определяется диаметром электрода и, как правило, составляет 100–500 л/ч.

Гелий в качестве защитного газа применяется редко, поскольку, будучи дефицитным, имеет высокую стоимость. Поэтому чаще всего его вводят в виде добавки к аргону или используют для сварки:

– химически чистых и активных материалов и сплавов;

– сплавов на основе магния и алюминия;

– при необходимости обеспечить значительную глубину проплавления (это возможно за счет высокого значения потенциала ионизации газа) или особую форма сварного шва.

Физические свойства гелия:

– бесцветный;

– без запаха;

– неядовитый

– плотность – 0,18 кг/м3.

Гелий в 10 раз легче аргона, а объемное содержание этого газа в воздухе составляет 0,00052 %.

Промышленность поставляет гелий согласно ТУ 51-68975 трех марок – А, Б и В. Его транспортировка осуществляется в соответствии с ГОСТом 20461-75. При этом газ находится в стальных баллонах под давлением 15 МПа, которые окрашены в коричневый цвет, а на них нанесена белая надпись «Гелий».

Расход гелия в процессе сварки – 200–900 л/ч, потому что легкий гелий быстро улетучивается, а для создания надежной защиты сварочной ванны приходится увеличивать его подачу.

Азот не является инертным газом (в природе это самый распространенный газ, в частности его содержание в воздухе составляет 78,09 %), но он так ведет себя по отношению к меди и ее сплавам (относительно других металлов и стали азот рассматривается как активный и часто вредный газ, поступление которого в сварочную ванну необходимо ограничивать). Поэтому его используют для сварки, наплавки и плазменной резки таких материалов.

Физические свойства азота:

– бесцветный;

– без запаха и вкуса;

– неядовитый;

– невзрывоопасный;

– плотность – 1,2506 кг/м3.

По ГОСТу 9293-74 агрегатное состояние азота при транспортировке – газ. Его перевозят в стальных емкостях объемом 40 л под давлением 15 МПа. Он поставляется четырех сортов, различающихся процентным содержанием азота:

– высший (99,9 %);

– I сорт (99,5 %);

– II сорт (99 %);

– III сорт (97 %).

Стальные емкости объемом 40 л содержат азот под давлением 15 МПа.

Из активных газов, т. е. взаимодействующих с металлом сварочной ванны и растворяющихся в нем, следует назвать углекислый газ, который применятся для защиты сварки в чистом виде или в смеси с аргоном. Помимо жидкого и газообразного состояния, углекислый газ бывает и твердым (сухой лед).

Физические свойства двуокиси углерода:

– бесцветная;

– неядовитая;

– с кисловатым запахом и вкусом;

– плотность – 1,98 кг/м3;

– температура сжижения – 78,5 °C.

Углекислый газ в 1,6 раза тяжелее воздуха, в котором на его долю приходится 0,03 %.

По ГОСТу 8050-85 двуокись углерода содержит водяные пары, количество которых зависит от сорта газа:

– в высшем – 0,037 г/см3;

– в I сорте – 0,184 г/см3.

Углекислый газ транспортируется и поставляется в сжиженном состоянии в емкостях объемом 40 л при максимальном давлении 20 МПа. Баллон покрыт черной краской и снабжен надписью желтого цвета «CO2 сварочный».

Углекислота производится двух сортов: высшего, чистота которого составляет 99,8 %, и I сорта чистотой 99,5 %.

Поступающий в зону сварки углекислый газ не относится к нейтральным и под воздействием высоких температур распадается на оксид углерода и кислород. Одновременно с этим происходит окисление расплавленного металла, который после кристаллизации дает достаточно пористый шов с низкими механическими характеристиками. Чтобы снизить окислительные свойства свободного кислорода и добиться качественного шва, используют электродную проволоку с повышенным содержанием кремния и марганца, которые действуют как раскислители.

Для удаления водяных паров, которые присутствуют в баллоне с газом, емкость следует поставить вентилем вниз и через 10–15 минут осторожно его открыть. А перед сваркой из установленного как положено баллона надо выпустить воздух.

На производстве часто применяют смеси газов, что значительно повышает качество сварного шва, и нередко технологические свойства смеси превосходят показатели чистых газов. Например, используются следующие смеси:

1. Углекислый газ с 2–5 % кислорода. Эта смесь, во-первых, способствует мелкокапельному переносу металла; во-вторых, примерно на 30 % снижает разбрызгивание и потери металла; в-третьих, обеспечивает формирование качественного сварного шва.

2. 70 % гелия и 30 % аргона. Данная смесь, во-первых, значительно повышает производительность при сварке алюминия; во-вторых, увеличивает необходимую в определенных случаях глубину проплавления; в-третьих, дает сварной шов хорошего качества;

3. 88 % аргона и 12 % углекислого газа. Эта смесь, во-первых, при сварке стали делает горение сварочной дуги стабильным; во-вторых, снижает разбрызгивание расплавленного металла; в-третьих, позволяет получить качественный шов, поскольку значительно уменьшает поверхностное натяжение расплавленной электродной проволоки.

Резюмируя сказанное, следует подчеркнуть достоинства сварки в среде защитных газов:

– наличие визуального контроля сварочного процесса;

– широкий выбор рабочих режимов;

– расширение номенклатуры свариваемых металлов;

– возможность механизировать процесс;

– создание лучших условий труда для сварщиков.

Источники питания

Качественного сварного шва невозможно добиться без обеспечения стабильного горения сварочной дуги, т. е. без устойчивого протекания сварочного процесса. В значительной степени это зависит от источника питания дуги, которая загорается при коротком замыкании – в момент контакта электрода с изделием. Это сопровождается выделением теплоты и быстрым повышением температуры в зоне контакта.