Чугун – это сплав железа с углеродом, где, в отличие от стали, углерода много – около 2–5 %. В зависимости от количества углерода в сплаве различают белые, серые, ковкие и высокопрочные чугуны.
Белые чугуны на изломе имеют почти белый цвет. Весь углерод в них находится в связанном состоянии в виде карбида железа – цементита Fe3C. Цементит хрупок, имеет высокую твердость (выше твердости напильника), не поддается механической обработке режущими инструментами и как конструкционный материал практически не применяется. Используется для получения ковких чугунов и сталей.
Серый чугун – это не сплошной металл, а пористая металлическая губка, поры которой заполнены рыхлым неметаллическим веществом – графитом. Такая структура неблагоприятна для сварки, она не встречается ни в одном другом металле. На изломе он имеет серебристый цвет из-за наличия пластинчатых включений графита, включающего в себя половину всего углерода (остальной углерод находится в связанном состоянии). Серые чугуны содержат: 3,2–3,5 % углерода; 1,9–2,5 % кремния; 0,5–0,8 % марганца; 0,1–0,3 % фосфора и менее 0,12 % серы.
Пример обозначения серого чугуна: СЧ32–52. Буквы обозначают серый чугун (СЧ), первое число обозначает предел прочности при растяжении (32 кгс/мм2, или 320 МПа), второе число – предел прочности при изгибе. Относительное удлинение при разрыве серого чугуна практически равно нулю. Это характеризует его как непластичный материал.
Хорошо обрабатывается режущим инструментом. Температура плавления, в зависимости от количества углерода, составляет 1100–1250 °C.
Ковкий чугун – название условное. Он не поддается ковке, так как имеет повышенную пластичность и вязкость. Получают его длительным отжигом белого чугуна. В структуре содержит: 2,4–3,0 % углерода в виде графита хлопьевидной формы; 0,8–1,4 % кремния; 0,3–1,0 % марганца; менее 0,2 % фосфора; не более 0,1 % серы.
Ковкий чугун обладает повышенной прочностью при растяжении и высоким сопротивлением удару, он менее склонен к трещинообразованию. Пример обозначения ковкого чугуна: КЧ45–6. Буквы обозначают ковкий чугун (КЧ), первое число – предел прочности при растяжении (45 кгс/мм2, или 450 МПа), второе – относительное удлинение в процентах (6 %).
Высокопрочный чугун содержит графит шаровидной формы и имеет наиболее высокие прочностные свойства. Содержит: 3,2–3,8 % углерода; 1,9–2,6 % кремния; 0,6–0,8 % марганца; до 0,12 % фосфора и не более 0,3 % серы. Высокопрочный чугун получают путем введения добавки-модификатора – магния в жидкий расплав, что способствует образованию графитных включений шаровидной формы. Механические свойства такого чугуна приближаются к свойствам углеродистых сталей, а литейные свойства выше (но ниже, чем у серых чугунов). Пример обозначения высокопрочного чугуна: ВЧ45–5. Буквы обозначают высокопрочный чугун (ВЧ), первое число обозначает предел прочности при растяжении (45 кгс/мм2, или 450 МПа), второе – относительное удлинение в процентах.
Свариваемость чугуна можно характеризовать как противоречивую. При оценке физической свариваемости чугун следует отнести к группе хорошо свариваемых материалов, а при оценке по технологической свариваемости, когда требуется сварное соединение без снижения качества основного металла и металла шва, он является трудносвариваемым сплавом. Основные причины, ухудшающие свариваемость чугуна, следующие.
1. Возможность образования в шве и околошовной зоне хрупких и труднообрабатываемых структур отбела (т. е. появления участков с выделениями цементита той или иной формы) и закалки с очень высокой твердостью.
2. Повышенная текучесть и низкая пластичность затрудняют удержание расплавленного металла от вытекания и формирование шва. Это также создает напряженное состояние структуры и приводит к трещинам.
3. Чугун не имеет пластического (тестообразного) состояния и при достижении температуры плавления мгновенно переходит из твердого состояния в жидкое, а при охлаждении – из жидкого в твердое. Поэтому он поддается сварке только в нижнем положении шва.
4. Образование пористости за счет большого количества окиси углерода и быстрое затвердевание расплавленного металла – причина того, что газы не успевают выйти. Интенсивное газовыделение из сварочной ванны, которое продолжается и на стадии кристаллизации, может приводить к образованию пор в металле шва.
5. «Рост» чугуна, т. е. склонность серого чугуна к необратимому увеличению объема на 3–5 % при нагреве его до 300–500 °C, приводит к деформациям, иногда – к трещинам.
6. Вследствие окисления кремния на поверхности сварочной ванны возможно образование тугоплавких оксидов, что может приводить к непроварам.
При охлаждении чугун расширяется. Повышенная склонность чугуна к образованию хрупких структур связана в основном с высоким содержанием в нем углерода. Это явление особенно проявляется при дуговых способах сварки. При локальном нагреве чугуна создается перепад температур в теле, вызывающий термические напряжения.
Зато при газовой сварке обеспечивается бóльшая зона плавного нагрева и меньшая скорость охлаждения, поэтому образование структур закалки и отбела сварного стыка менее вероятно.
Чугуны очень неоднородны по своему химическому составу и сильно засорены различными примесями, поэтому результаты сварки чугунных деталей одинаковой марки могут быть различны. Нужно помнить и о том, что никому в производстве еще не удавалось получить равнопрочное чугунное сварное соединение.
Нужно помнить, что есть виды чугунных изделий, чугуны которых практически не поддаются сварке. Например, не поддается сварке так называемый горелый серый чугун – подвергшийся длительному воздействию высокой температуры (например, плита на печке), кислот, пара и т. п. Из-за пористости чугуна в подобных случаях окисление проникает на всю толщину металла, обволакивая металлические зерна пленкой окислов и делая металл рыхлым, механически непрочным и главное – не смачивающимся никаким жидким металлом. При попытке сварки дугой в стыке от температуры образуются (скатываются) шарики полуметалла, а стык на их объем углубляется, и получается канавка. Плохо также свариваются чугуны с черным изломом.
Технологические трудности сварки чугуна породили множество способов и разновидностей его сварки: чугун можно сваривать дуговой сваркой металлическим или угольным электродами, газовой сваркой, термитной сваркой, заливкой жидким чугуном, порошковой проволокой и т. д. Но ни один способ не является вполне приемлемым для всех случаев, встречающихся в практике. Поэтому сварку чугуна применяют только при ремонтных работах и при устранении мелких дефектов в отливках. Причем лишь газовая сварка является одним из относительно надежных и несложных способов, позволяющих получить наплавленный металл, по свойствам близкий к основному металлу. Это объясняется термическими процессами при сварке, меньшей вероятностью появления в зоне сплавления отбеленного чугуна.
В зависимости от температуры предварительного подогрева различают сварку с подогревом до высокой температуры (горячая сварка), с небольшим подогревом (полугорячая сварка) и без подогрева (холодная сварка).
Горячая сварка чугуна. Горячая сварка – это разработанный еще в XIX веке И. Г. Славяновым способ, успешно используемый до настоящего времени. Основными недостатками горячей сварки чугуна являются большая трудоемкость и тяжелые условия труда сварщиков, правда, этим достигается высокое качество сварного шва.
При горячей сварке изделия предварительно нагревают до 600–700 °C. При сварке крупных изделий можно применять местный подогрев. При подготовке дефектного места к сварке его тщательно очищают от загрязнения, разделывают для образования полости, легко доступной для сварки, устраивают формовку для предотвращения вытекания металла из сварочной ванны. Формовку выполняют графитовыми или угольными пластинками, скрепленными формовочной массой из кварцевого песка, увлажненного жидким стеклом, или другими формовочными материалами. Формовку производят в опоках. Форму просушивают при постепенном изменении температуры от 60 до 120 °C, после чего изделие подогревают. Применяют несколько способов ручной горячей сварки чугуна.
Ручную дуговую сварку покрытыми электродами используют в мелкосерийном производстве, при заварке дефектов в труднодоступных местах. При сварке покрытыми электродами с чугунным стержнем на переменном или постоянном токе прямой полярности обеспечивается стабильно хорошее качество. Перед началом заполнения заформованного участка первую порцию расплавленного металла рекомендуется выплеснуть для удаления неметаллических включений. Сварку ведут на токах 900–1000 А.
Для заварки мелких дефектов при полужидком металле сварочной ванны следует применять покрытые электроды со стержнем из углеродистой стали ∅ 5 мм. Сварку производят на постоянном токе прямой полярности силой 200–250 А с использованием стандартного оборудования. Механические свойства металла сварного соединения аналогичны свойствам основного металла.
Газовую сварку чугунных деталей выполняют нормальным пламенем или пламенем с небольшим избытком ацетилена. У деталей толщиной до 5 мм разделку кромок не делают, а у изделий толщиной свыше 5 мм производят разделку кромок под углом 70–90°. Диаметр прихваток 5–6 мм. После нагрева до 500–700 °C в начале сварки пламя горелки устанавливают почти вертикально таким образом, чтобы ядро пламени находилось на расстоянии 2–3 мм от поверхности свариваемого металла. По мере выполнения сварки горелку наклоняют под небольшим углом. Вид пламени – нормальное или слегка науглероживающее. Его тепловую мощность выбирают исходя из расхода ацетилена 120 дм3/ч на 1 мм толщины свариваемого металла.
В качестве присадки применяют чугунные прутки марки А диаметром 4, 6, 8, 10 мм и длиной 250–450 мм. Для облегчения выделения газа металл сварочной ванны необходимо непрерывно помешивать присадочным прутком. С целью удаления образовавшихся при сварке окислов и улучшения процесса сварки используют специальные флюсы (табл. 36). Для получения сварного соединения со свойствами, аналогичными свойствам основного металла, следует уменьшить скорость охлаждения путем отвода пламени сварочной горелки от поверхности свариваемого металла на 50–60 мм, подогревая наплавленный металл пламенем в течение 1–1,5 мин. Для уменьшения внутренних напряжений в массивных деталях сложной конфигурации их рекомендуется вторично подогреть до 600–700 °C и постепенно охладить.