Газопламенная обработка металлов охватывает такие широко распространенные в промышленности и строительстве технологические процессы, как газовая сварка и наплавка, пайка, газовая и газоэлектрическая резка, термическая правка с применением газового пламени, пламенная поверхностная закалка, газовая металлизация, сварка пластмасс и других неметаллов.
Газовая сварка – это сварка плавлением, при которой для нагрева используется теплота пламени смеси газов, сжигаемой с помощью горелки[14]. Газовую сварку выполняют как с применением присадочной проволоки (рис. 20), так и без нее, если формирование шва возможно за счет расплавления кромок основного металла. В качестве горючих газов применяют ацетилен, сжиженные газы на основе пропан-бутановых смесей, природный газ, в качестве окислителя – кислород или воздух.
Рис. 20. Газовая сварка:
1 – соединяемые детали; 2 – сварочная ванна; 3 – присадочный материал; 4 – газовое пламя; 5 – горелка
Ацетилен-кислородные смеси, обеспечивающие максимальную температуру пламени (> 3000 °C), могут быть использованы для любых процессов газовой сварки. Для сварки сталей толщиной до 4 мм с использованием специальной присадочной проволоки можно применять пропан-бутановые смеси.
При газопламенной обработке алюминия, латуни, свинца и других материалов, температура плавления которых ниже температуры плавления стали, целесообразно применять пропан-бутан. Для кислородной резки, пайки, наплавки, металлизации можно использовать любые газы – заменители ацетилена.
Газосварка проста, универсальна, не требует дорогостоящего оборудования и мощного источника электрической энергии. С ее помощью можно сваривать почти все металлы, применяемые в технике. Причем такие металлы, как чугун, медь, свинец, латунь, легче поддаются газовой сварке, чем дуговой. Газовая сварка необходима и применяется при изготовлении и ремонте изделий из тонколистовой стали (1–3 мм); при ремонте изделий из чугуна, бронзы, силумина; при монтаже и ремонте трубопроводов отопления, водопровода, газопровода из труб малых (до 50 мм) диаметров и при подобных работах; при сварке изделий из алюминия, меди, латуни, свинца; при наплавке латуни на чугунные или стальные детали (поршни, штоки гидросистем); при сварке ковкого и высокопрочного чугуна с применением присадочных прутков из латуни и бронзы.
К недостаткам газовой сварки относятся меньшая производительность и бóльшая зона нагрева, чем при дуговой сварке. При газовой сварке концентрация тепла меньше, чем при дуговой, поэтому разогреву подвергается бóльшая зона и увеличивается коробление. Газосварочный процесс почти не поддается механизации и автоматизации. Кроме того, газовая сварка – источник повышенной пожаро– и взрывоопасности.
Качество сварных соединений, выполняемых газовой сваркой, выше, чем дуговой электродами с тонким покрытием, но несколько ниже, чем качественными электродами. Дело в том, что при газовой сварке не происходит легирования наплавленного металла, в то время как при дуговой сварке качественными электродами, в покрытии которых содержатся ферросплавы, производится довольно значительное легирование.
Производительность газовой сварки, высокая при малой толщине основного металла, быстро снижается с увеличением его толщины. При толщине металла 0,5–1,5 мм производительность газовой сварки может быть выше, чем дуговой. С увеличением толщины металла до 2–3 мм скорости газовой и дуговой сварки становятся одинаковыми, а затем с увеличением толщины металла разница быстро возрастает в пользу дуговой сварки. Например, при сварке стали толщиной 1 мм скорость составляет около 10 м/ч, а толщиной 5 мм – 2,5 м/ч. Далее, при малой толщине абсолютный расход газов на 1 м сварного шва невелик, но с увеличением толщины основного металла быстро растет расход газов и времени на сварку, и газовая сварка становится дороже дуговой; разница в стоимости быстро увеличивается с возрастанием толщины основного металла. Поэтому газовая сварка стали толщиной более 4 мм практически не применяется.
К особенностям газовой сварки следует также отнести почти исключительное выполнение сварных швов за один проход. Получение швов в несколько слоев, широко практикуемое в дуговой сварке, почти не применяется при газовой.
Газовое пламя менее яркое, чем сварочная дуга, оно не обжигает лицо, поэтому для защиты глаз сварщика достаточно очков с цветными стеклами.
Материалы, применяемые при газовой сварке
Горючие газы
При газовой сварке в качестве окислителя применяют кислород, а горючими газами служат ацетилен, водород, пропан и др.
Газообразныйкислород (О2) бесцветен, не имеет запаха и вкуса, немного тяжелее воздуха. Плотность кислорода при атмосферном давлении и температуре 20 °C равна 1,33 кг/м3. Активно поддерживает горение и служит для повышения температуры газового пламени при сгорании горючего газа.
Согласно ГОСТ 5583–78, промышленность выпускает газообразный технический кислород двух сортов. Объемная доля кислорода в техническом кислороде I сорта составляет 99,7 %, II сорта – 99,5 %.
Кислород способен образовывать взрывоопасные смеси с горючими газами или парами жидких горючих веществ, а при его соприкосновении с органическими соединениями (масла, жиры и другие вещества) может произойти их самовоспламенение.
Газообразный ацетилен (С2Н2) – бесцветный газ, имеющий специфический чесночный запах из-за присутствия примесей: фосфористого водорода, сероводорода и др. Ацетилен легче воздуха: при атмосферном давлении и температуре 20 °C его плотность составляет 1,09 кг/м3. Хорошо растворяется в жидкостях, особенно в ацетоне, становясь более безопасным. Используется для формирования газового пламени при сгорании в струе кислорода. Преимущество ацетилена перед другими горючими газами – возможность получения наиболее высокой температуры пламени (до 3200 °C).
На месте сварки ацетилен получают в газогенераторах путем разложения карбида кальция водой или используют пиролизный[15] ацетилен. Последний к месту сварки доставляют растворенным в ацетоне в виде пористой массы, заключенной в стальной баллон. Пиролизный ацетилен дешевле, чем получаемый из карбида кальция.
Ацетилен образует с кислородом, содержащимся в воздухе, взрывоопасные смеси при нормальном атмосферном давлении. Наиболее взрывоопасны смеси, содержащие 7–13 % ацетилена. Ацетилен может взрываться и без окислителя!
Водород (Н2) при атмосферном давлении и температуре 20 °C – горючий газ без цвета и запаха. Плотность водорода равна 0,084 кг/м3, он в 14,5 раза легче воздуха. Водород предназначен для формирования газового пламени при сгорании в струе кислорода. Температура пламени составляет 2600 °C. Водородно-кислородное пламя бесцветное, не имеет четких очертаний, что затрудняет его регулирование.
Хранится и поставляется в газообразном состоянии в стальных баллонах объемом 5, 10, 20 и 40 литров.
Водород образует с кислородом (2 объема водорода и 1 объем кислорода) взрывоопасную гремучую смесь.
Технический пропан – это смесь пропана (С3Н8) и пропилена (С3Н6), представляющая собой при нормальных условиях бесцветный газ, не имеющий запаха. Для безопасного пользования в состав смеси добавляют сильнопахнущие вещества – одоранты. Газ тяжелее воздуха, при атмосферном давлении и температуре 20 °C его плотность составляет 1,88 кг/м3. Применяется для формирования газового пламени с температурой 2700 °C в качестве заменителя ацетилена.
Поставляют пропан к месту сварки в стальных цельносварных баллонах в сжиженном состоянии.
Пропан огнеопасен. Может скапливаться в приямках, подвалах и колодцах, образуя взрывоопасную смесь.
МАФ-газ – метилацетилен-алленовая газообразная фракция, образующаяся в процессе переработки природного газа и нефтепродуктов, обладающая хорошими теплофизическими свойствами. Газ тяжелее воздуха, плотность при нормальных условиях составляет 1,9 кг/м3. Обладает резко выраженным запахом.
МАФ-газ применяют в качестве заменителя ацетилена при газовой сварке. Он в два раза дешевле ацетилена, а температура пламени при его сгорании достигает 2930 °C. Газ поставляют к месту сварки в сжиженном состоянии в цельносварных баллонах (таких же, как и для пропана). В баллоне вместимостью 50 л и весом 22 кг содержится 21 кг газа.
Склонность к обратному удару газа МАФ незначительна. По сравнению с ацетиленом МАФ имеет более мягкое пламя, что дает свои преимущества при работе с металлом малых толщин, с цветными металлами, а также при контурной резке изделий. В то же время ядро даже нейтрального пламени при использовании газа МАФ длиннее ацетиленового в 1,5–2 раза.
Технология газопламенной обработки при использовании газа МАФ в основном такая же, как и при использовании ацетилена. В качестве аппаратуры могут применяться горелки, резаки, редукторы и другие устройства, предназначенные для работы с ацетиленом и на сжиженных газах (пропан-бутановых смесях). Присадочную проволоку лучше применять такую, которая больше подходит для сварки пропаном.
На баллоне с газом может использоваться редуктор, применяемый на пропановых баллонах. По сравнению с пропан-бутановой смесью при сварке стали газом МАФ расход кислорода в 1,5 раза меньше.
Смесь МАФ-газа (3,4–10,8 % по объему) с воздухом взрывоопасна. Газ может скапливаться в подвалах, колодцах и приямках, образуя взрывоопасную смесь.
Присадочные материалы
Присадочными материалами являются проволока, прутки (стержни), полоски металла, близкие по свойствам свариваемому металлу. При проведении сварки они обеспечивают дополнительный металл для заполнения зазора между свариваемыми кромками и образования сварного шва требуемой формы.
Основным присадочным материалом служит сварочная проволока.
При сварке углеродистых и легированных сталей применяют холоднотянутую сварочную проволоку. Ее характеристики приведены выше, в главе «Характеристика, классификация и назначение сварочной проволоки».
Для газовойсварки серого чугуна выпускают чугунные прутки ∅ 4, 6, 8, 10, 12 и 16 мм. Маркировку торца прутков выполняют краской черного, белого, красного, синего, коричневого, желтого или зеленого цвета.
Для газовой сварки меди, медно-никелевыхсплавов, бронз и латуни применяют сварочную проволоку, отвечающую ГОСТ 16130–90. Ее диаметр составляет 0,8–8,0 миллиметров.
Условное обозначение присадочной проволоки из меди или ее сплава соответствует классификации этих материалов по следующим признакам:
● способу изготовления (холоднодеформированная (тянутая) – Д; горячедеформированная (прессованная) – Г);
● форме сечения – КР (проволоку изготавливают исключительно круглого сечения);
● механическим свойствам (мягкая – М, твердая – Т);
● виду поставки (мотки или бухты – БТ, катушки – КТ, барабаны – БР, сердечники – CP, немерной длины – НД).
При сварке алюминия и его сплавов используют тянутую и прессованную проволоку из алюминия и алюминиевых сплавов, отвечающую ГОСТ 7871–75. Ее диаметр составляет 0,8–12,5 мм. Условные обозначения при маркировке, характеризуют:
● способ изготовления (тянутая – В, прессованная – П);
● вид обработки (нагартованная – Н, отожженная – М);
● вид поставки (мотки (бухты) – БТ, катушки – КТ).
Сварочный флюс[16]. При газосварке флюс наносится на свариваемые кромки или вносится в сварочную ванну оплавляемым концом присадочного прутка (налипающим на него при погружении во флюс). Флюсы могут использоваться и в газообразном виде при подаче их в зону сварки с горючим газом.