Сверхдержавы искусственного интеллекта — страница 26 из 52

оказательных и незаметных признаков с помощью сложнейших математических операций, превзойдут даже первоклассных специалистов-людей в решении многих аналитических бизнес-задач.

Подобные способы оптимизации хорошо работают в отраслях, где накоплены большие объемы структурированных данных. «Структурированными» можно назвать данные, которые категоризированы, размечены и доступны для поиска. Это, например, массивы данных о ценах на акции, использовании кредитных карт и статистика невыплаченных ипотечных кредитов.

Как работает ИИ для бизнеса

Еще в 2004 году компании Palantir и IBM Watson предлагали предпринимателям и правительствам услуги бизнес-консалтинга на основе анализа больших объемов данных. Но массовое внедрение глубокого обучения в 2013 году сделало эти услуги более доступными и породило новых конкурентов, таких как Element AI в Канаде и 4th Paradigm в Китае.

Эти стартапы работают с традиционными компаниями или организациями, предлагая им внедрить свои алгоритмы в существующие базы данных, чтобы найти возможные способы оптимизации. Они помогают своим клиентам эффективно выявлять мошенничество, совершать более разумные сделки и обнаруживать нерациональные звенья в цепочках поставок. Ранние проекты на основе ИИ для бизнеса были сосредоточены в финансовом секторе, потому что он, естественно, построен на наиболее тщательном анализе данных. Эта отрасль работает с хорошо структурированной информацией и имеет четкие показатели, которые и необходимо оптимизировать. Это объясняет, почему Соединенные Штаты вырвались вперед и раньше других разработали приложения для применения ИИ в области бизнеса. Крупные американские корпорации уже давно собирают большие объемы данных и хранят их в хорошо структурированных форматах. Они часто используют программное обеспечение для ведения бухгалтерии, учета инвентаря и управления взаимоотношениями с клиентами. Как только данные введены в формы, такие компании, как Palantir, могут вступить в игру и с помощью инструментов ИИ найти решения, которые позволяют сэкономить средства и увеличить прибыль.

Однако в Китае такой подход неприменим. Китайские компании никогда массово не использовали корпоративное программное обеспечение или стандартизированные хранилища данных, предпочитая индивидуальные системы ведения бухгалтерии. Часто эти системы не масштабируются и плохо интегрируются с существующим программным обеспечением, что усложняет очистку и структурирование данных. Недостаток данных также делает результаты оптимизации менее точными. Еще одна проблема связана с особенностями деловой культуры: китайские компании тратят гораздо меньше денег на сторонний консалтинг, чем американские. Многие китайские предприятия старой школы больше напоминают феодальные вотчины, чем современные организации, и их руководители часто считают, что внешняя экспертиза – это пустая трата денег.

Попрощайтесь с вашим банкиром

Как корпоративные данные Китая, так и его корпоративная культура затрудняют применение искусственного интеллекта второй волны для традиционных компаний. Но в тех отраслях промышленности, где ИИ может, как в чехарде, «перескочить» через какой-то большой этап, Китай решительно шагает вперед. При этом относительная отсталость страны в таких областях, как финансовые услуги, превращается в трамплин для передовых приложений ИИ. На их основе строится одно из наиболее перспективных направлений в этой области – микрофинансирование. Когда Китай «перескочил» через кредитные карты сразу к мобильным платежам, в стороне осталась проблема кредитования. WeChat и Alipay позволяют снимать средства прямо с вашего банковского счета, но не дают вам возможности потратить немного больше денег до следующей зарплаты. Образовавшаяся ниша была занята ИИ-приложением Smart Finance, которое стало выдавать миллионы небольших кредитов, полагаясь исключительно на свои алгоритмы. Вместо того чтобы просить потенциального заемщика ввести сумму заработка, оно просто запрашивает доступ к некоторым данным из его телефона. Эти данные образуют своего рода цифровой отпечаток пальца, по которому с удивительной точностью можно определить, вернет ли заемщик кредит в триста долларов.

Алгоритмы глубокого обучения Smart Finance не просто рассматривают очевидные показатели, например, сколько денег в вашем кошельке WeChat. Наряду с этим они опираются на данные, которые ничего не значили бы для банковского служащего. Например, учитывают скорость, с которой вы ввели дату рождения, остаток заряда вашего телефона и тысячи других параметров.

Какое отношение аккумулятор телефона заявителя имеет к кредитоспособности? На этот вопрос нельзя ответить на основе простой причинно-следственной связи. Но это не означает, что ИИ ошибается. Это означает, что наш разум не всегда способен распознать корреляции в больших потоках данных. Обучив свои алгоритмы на миллионах данных о выплаченных и невыплаченных кредитах, компания Smart Finance выявила тысячи мельчайших особенностей, связанных с кредитоспособностью, в том числе тех, которые кажутся необъяснимыми с точки зрения здравого смысла.

Эти необычные параметры составляют то, что основатель Smart Finance Kэ Цзяо называет «новым эталоном красоты» для кредита, заменяющим необработанные данные о доходах, почтовый индекс и даже кредитный рейтинг[56].

Растущие горы данных позволяют компании совершенствовать алгоритмы, расширять клиентуру и предоставлять кредиты людям из социальных групп, обычно игнорируемых традиционным банковским сектором Китая: молодежи и рабочим-мигрантам. В конце 2017 года Smart Finance выдавала более 2 млн займов в месяц, причем процент невозвратных среди них настолько низок, что самым известным традиционным банкам остается лишь завидовать.

Теперь вас увидят

Но ИИ для бизнеса способен не только считать доллары и центы. Он также способен обеспечить качественными массовыми услугами тех, кто раньше не мог их себе позволить. Одно из самых перспективных направлений для внедрения ИИ – медицинская диагностика. Лучшие исследователи Соединенных Штатов – Эндрю Ын и Себастьян Трун – уже представили эффективные алгоритмы, диагностирующие некоторые заболевания не менее точно, чем врачи. В основе алгоритмов лежит анализ изображений: так, они могут распознать пневмонию по рентгеновским снимкам грудной клетки и рак кожи по фотографиям. Но более универсальное приложение могло бы контролировать весь процесс диагностики различных заболеваний.

В наши дни достаточными медицинскими знаниями, чтобы ставить диагнозы, обладают лишь немногочисленные люди – врачи. При этом человеческая память несовершенна, и у редкого врача хватает времени на то, чтобы следить за всеми исследованиями и достижениями науки в своей области.

Конечно, огромное количество медицинской информации разбросано по интернету, но большинству людей она ничего не говорит. Вероятность получить верный диагноз по-прежнему в значительной степени зависит от места проживания и, откровенно говоря, платежеспособности. Особенно остро это проявляется в Китае, где все хорошо обученные врачи сосредоточены в богатых городах. Уехав за пределы Пекина и Шанхая, вы, вероятно, столкнетесь со значительно более низкой квалификацией врачей. Результат? Пациенты по всей стране стараются попасть в крупные больницы, ожидая в очередях по нескольку дней и усугубляя тем самым свое состояние.

Вторая волна ИИ обещает все это изменить. Основных этапов диагностики два: сбор данных (симптомы, анамнез, особенности окружающей среды) и прогнозирование коррелирующего с ними явления (болезни). Причем поиск различных корреляций и прогнозирование – это именно то, с чем превосходно справляются технологии глубокого обучения. При наличии достаточного объема данных (в нашем примере – медицинской информации) диагностический инструмент на основе ИИ смог бы превратить любого медика в гения диагностики – доктора, вылечившего десятки миллионов пациентов, обладающего сверхъестественной способностью обнаруживать скрытые корреляции, да еще и идеальной памятью в придачу.

Именно к этому стремится компания RXThinking. Основанный китайским исследователем ИИ, который долго проработал в Кремниевой долине и в компании Baidu, стартап обучает медицинские алгоритмы искусственного интеллекта, чтобы в итоге превратить их в супердиагностов и отправить во все уголки Китая. Разработанное RXThinking приложение на основе ИИ призвано не заменить врачей, а значительно расширить их возможности. Оно служит для врачей своего рода навигатором, который предлагает им «лучший маршрут», основанный на анализе информации, но оставляет выбор за ними.

По мере того как алгоритм получает информацию о пациенте, он сужает круг поиска и уточняет вопросы, необходимые для завершения диагностики. Как только информации набирается достаточно, алгоритм выдает список возможных диагнозов и процент вероятности для каждого.

Несмотря на все достоинства приложения, право окончательного решения остается за врачом, который всегда может отклонить его рекомендации, – но следует учесть, что приложение, прежде чем давать их, просматривает более чем 400 млн историй болезни и постоянно сканирует самые свежие медицинские издания. Оно делает медицинское обслуживание мирового класса доступным всем слоям общества, невзирая на социальное неравенство, и позволяет всем врачам и медсестрам посвятить больше времени и сил решению задач, непосильных для машин, – например, поддерживать пациентов, когда диагноз не оставляет надежды.

Консультации в судебной системе

Аналогичные принципы в настоящее время применяются и в правовой системе Китая – еще одной бюрократической структуре, в которой уровень квалификации сотрудников сильно различается в зависимости от региона. Компания iFlyTek активно внедряет ИИ в судопроизводство: она разработала инструменты и реализует пилотную программу в Шанхае, где данные по прошлым делам используются для консультирования судей – как при работе с уликами, так и при вынесении приговоров. С помощью инструментов распознавания речи и обработки естественного языка система сравнивает все представленные доказательства – показания свидетелей, документы, справочные материалы – и находит противоречивые факты. Затем она предупреждает судью о таких спорных моментах, чтобы тот мог инициировать дальнейшее расследование. Когда судья принимает решение, он может обратиться к другому инструменту ИИ за консультацией по поводу приговора. Этот «помощник» изучает факты: сведения о предыдущих судимостях ответчика, возраст, размер причиненных убытков и так далее. Его алгоритмы сканируют миллионы судебных записей по аналогичным делам. На основании изученной информации дается рекомендация: приговорить ответчика к тюремному заключению или штрафу. Судьи также могут просматривать похожие случаи, которые показывают им точки данных в системе координат