Сверхдержавы искусственного интеллекта — страница 36 из 52

В 2013 году двое ученых из Оксфордского университета положили начало целой серии исследований, выпустив зловещий прогноз, согласно которому 47 % рабочих мест в США могут перестать существовать уже в течение последующих 10 или 20 лет из-за автоматизации[81]. Для начала авторы статьи – Карл Бенедикт Фрей и Майкл Осборн – задали экспертам по машинному обучению вопрос, как они оценивают вероятность автоматизации 70 профессий в ближайшие годы. Затем, совмещая данные ответов с перечнем основных «узких мест» в машинном обучении (приведенным в секторах «Безопасная зона» на диаграммах в предыдущем разделе), Фрей и Осборн с помощью вероятностной модели получили прогноз того, насколько доступными для автоматизации окажутся еще 632 профессии. Результаты показали, что почти половина рабочих мест в США в ближайшие десятилетия окажется в зоне «высокого риска замены», и вызвали настоящий ажиотаж. Фрей и Осборн были осторожны и снабдили свое заключение многочисленными оговорками. К тому же речь в нем шла о том, какие специальности будет технически возможно заменить машинами, а не о том, сколько из них действительно исчезнут. Однако за исследованием последовал шквал публикаций в прессе, в которых этот важный момент не упоминался, зато тиражировалось заявление, что половина всех трудящихся скоро останется без работы.

Вскоре последовало еще одно громкое исследование. В 2016 году трое экономистов из Организации экономического сотрудничества и развития (ОЭСР) использовали альтернативную модель и получили оценку, казалось бы, прямо противоречившую оксфордскому исследованию. Согласно их выводам, высокий риск вытесняющей автоматизации в Соединенных Штатах существовал всего лишь для 9 % рабочих мест[82]. Откуда же взялся такой огромный разрыв? Исследователи не согласились с подходом Осборна и Фрея, при котором оценка основывалась на «автоматизируемости профессии». Команда ОЭСР исходила из предпосылки, что автоматизированы будут не сами профессии, а, скорее всего, довольно конкретные задачи. Группа ОЭСР утверждала, что многие задачи, выполняемые представителями большинства профессий, нельзя алгоритмизировать, например совместную работу с коллегами в группах, личное общение с клиентами и т. п.

Исследователи предложили подход, при котором профессиональная деятельность раскладывалась на многочисленные компоненты и каждый из них оценивался с точки зрения возможностей его автоматизации. В этой модели работа, например, ассистента по заполнению налоговых деклараций, классифицируется не как одно занятие, а как серия задач, поддающихся автоматизации (обзор поступивших документов, расчет максимальных отчислений, поиск несоответствий в документах и т. д.), и тех, которые ей не поддаются (встречи с новыми клиентами, доведение принятых решений до каждого из клиентов и т. д.). Затем группа ОЭСР применила вероятностную модель и расcчитала, какой процент рабочих мест может оказаться «в зоне высокого риска» (если автоматизации поддаются не менее 70 % профессиональных задач). Как уже говорилось, расчеты показали, что в США в эту зону попадают всего 9 % трудящихся. Применив ту же модель для 20 других стран, ученые из ОЭСР установили, что доля профессий с высоким уровнем риска будет равна 6 % в Корее и 12 % в Австрии. Казалось, можно не волноваться: исследование подтвердило, что слухи о грядущей безработице сильно преувеличены. Но, как и следовало ожидать, дебаты не утихали. Подход ОЭСР, основанный на автоматизации задач, стал преобладающим среди исследователей, однако не все они согласились с оптимистичными выводами, изложенными в докладе. В начале 2017 года исследователи из PwC, пользуясь тем же подходом, провели собственный анализ и обнаружили, что к началу 2030-х годов в Соединенных Штатах высокому риску уничтожения из-за автоматизации подвергнется 38 % рабочих мест[83]. Расхождение с результатом в 9 %, полученным учеными из ОЭСР, которые просто использовали для расчетов немного другой алгоритм, было значительным. Исследователи из PwC, как и их предшественники, вскоре заявили, что их прогноз касается технических возможностей автоматизации, а на самом деле изменения на рынке труда будут протекать более мягко благодаря нормативной, правовой и социальной динамике.

Исследователи из Глобального института McKinsey попытались найти некое усредненное решение. Я помогал институту в проведении его исследований, связанных с Китаем, и стал соавтором научной статьи, посвященной китайскому цифровому ландшафту. Используя все тот же подход, основанный на разделении каждой профессии на ряд задач, команда компании McKinsey подсчитала, что около 50 % рабочих задач по всему миру уже автоматизировано[84]. Для Китая этот процент был несколько выше – 51,2 %, а для США – немного ниже – 45,8 %. Поэтому, когда дело дошло до оценки фактических последствий для рынка труда, исследователи McKinsey были менее пессимистичными. При быстром внедрении методов автоматизации (сценарий, наиболее сопоставимый с приведенными выше результатами) к 2030 году может быть автоматизировано 30 % профессиональных задач во всем мире, но только 14 % трудящихся вынуждены будут поменять специальность. Итак, о чем же говорит нам проведенный обзор научных статей? Оценки экспертов относительно сокращения рабочих мест в Соединенных Штатах варьируются в пределах от 9 % до 47 %. И даже если придерживаться подхода, основанного на автоматизации задач, то все равно останется разброс в диапазоне от 9 % до 38 %, то есть от относительного благополучия до самого настоящего кризиса. Такая разница в оценках не должна вызывать у нас недоумения. Однако нам стоит подумать о том, чему эти исследования могут научить нас – и чего, они, вероятно, не отражают.

О чем не говорят исследования

С уважением относясь к опыту экономистов, получивших все приведенные выше оценки, я не могу согласиться с выводами ОЭСР. Во-первых, я сомневаюсь в правильности их входных данных и уравнений, а во-вторых, я иначе представляю себе вызванное ИИ разрушение рынков труда. Эти противоречия заставляют меня согласиться с более высокими оценками PwC, хотя я настроен еще более пессимистично. Во-первых, я не согласен с тем, как в исследованиях оценивались технические возможности машин в предстоящие годы. В оксфордском исследовании 2013 года группу специалистов по машинному обучению попросили предсказать, будут ли автоматизированы 70 профессий в ближайшие два десятилетия, а затем эти данные использовались для оценки потенциала автоматизации в других отраслях. И хотя исследователи ОЭСР и PwC использовали другой, основанный на задачах, подход, их оценки все равно строились на данных 2013 года. На тот момент эти предположения экспертов выглядели правомерными, но за последние пять лет были сделаны огромные шаги вперед в области машинного обучения. В то время эксперты иногда могли предсказать отдельные новшества, которые уже были на подходе. Но мало кто из них ожидал, что глубокое обучение станет настолько результативным и настолько быстрым. Когда дело доходит до реального применения, эти неожиданные новшества расширяют практические возможности ИИ и, следовательно, уничтожают рабочие места. Один из ярких примеров тому – соревнование ImageNet. На конкурсе алгоритмы команд-участниц должны выявить тысячи различных объектов (таких как птицы, мячи, отвертки и мечети) на миллионах изображений. Он быстро стал одним из самых уважаемых соревнований в области распознавания изображений, а его результаты превратились в ключевой показатель прогресса ИИ в области компьютерного зрения.

Незадолго до того, как в начале 2013 года оксфордские эксперты по машинному обучению сделали свой прогноз, состоялось соревнование ImageNet 2012 года, на котором «дебютировали» методы глубокого обучения. Команда Джеффри Хинтона, используя эти методы, сделала рекордно малое количество ошибок – около 16 %, и значительно обогнала остальных участников соревнований, ни одному из которых не удавалось добиться доли ошибок ниже 25 %.

Итоги конкурса вызвали большой интерес к глубокому обучению в сообществе ИИ, но это была всего лишь первая ласточка. К 2017 году алгоритмы почти всех команд делали 5 % ошибок: это приблизительно соответствовало результатам, которые показывают люди при выполнении аналогичных заданий. Причем средний по своим возможностям алгоритм 2017 года делал в три раза меньше ошибок, чем лучший алгоритм 2012 года. За годы, прошедшие после прогноза ученых из Оксфорда, компьютерное зрение стало лучше, чем человеческое. Теперь эта технология применяется на практике во многих областях. Но компьютерным зрением дело не ограничивается. Алгоритмы бьют все новые рекорды в области распознавания речи, машинного чтения и машинного перевода. Хотя все эти достижения нельзя назвать фундаментальными, они воодушевляют предпринимателей. Все вышесказанное заставляет меня поверить в более пессимистичный прогноз PwC, предполагающий, что к началу 2030-х годов 38 % рабочих мест в США все же окажется в зоне высокого риска.

Два вида утраты рабочих мест: полная замена и исчезновение при модернизации отраслей

Но помимо вышеописанных расхождений в методологии, я считаю, что если использовать только один подход – основанный на оценке возможности автоматизации отдельных задач, – то мы упускаем из виду совершенно отдельную проблему: потери рабочих мест в результате внедрения новых бизнес-моделей, разработанных на основе ИИ. Я назову свой подход отраслевым, чтобы разграничить его и те два подхода, о которых шла речь выше. В какой-то степени он сформировался под влиянием моей собственной работы. Прежние исследования проводились в основном экономистами, в то время как я – технический специалист и венчурный инвестор. Экономисты, делая свои прогнозы, оценивали задачи, решаемые специалистом-человеком, и выясняли, способна ли их решить машина. Другими словами, целью этого подхода было установить, можно ли полностью заменить работника-человека машиной.