.
Рис. 2. Строение молекул воды (а) и их взаимное расположение (б)
Может ли свет в море произвести такое разрушение молекул? К счастью, нет. Ведь энергия фотонов видимого света, распространяющегося в море, не превышает, как мы рассчитывали, 3,3 эв. Это разрушение могли бы вызвать фотоны ультрафиолетового света, имеющие длину волны излучения менее 240 нм. Однако, как мы узнаем в дальнейшем, такой свет практически полностью задерживается атмосферой и не достигает поверхности моря. А вот для нарушения водородной связи, т. е. разрушения ассоциаций молекул, энергии видимого света достаточно, ибо энергия водородных связей меньше 1 эв. Таким образом, свет, проникающий в толщу моря, заставляет молекулы воды беспрерывно перемещаться, соединяться друг с другом и делиться энергией, полученной у поглощенных фотонов. Причем обладающий меньшей энергией красный свет поглощается быстрее синего и подавляющая часть его лучистой энергии переходит в тепловую.
Обладающий большей энергией синий фотон способен более длительное время противиться поглощению. При столкновении с молекулой он лишь несколько изменяет направление своего движения, но продвигается дальше. Только после многократных столкновений он в конце концов поглощается при очередной встрече с молекулой воды.
Совокупность этих, казалось бы, ничтожно малых процессов, умноженная на их массовость, обусловливает в конечном счет движение вод в океане, их температуру и жизнедеятельность организмов, населяющих его толщу.
Но поглощенная энергия преобразуется не только в тепловую. Поглощенный клетками фитопланктона, находящимися в морской воде, квант световой энергии приводит к химической реакции синтез вещества в молекулах белка и вызывает процесс обмена веществ, т. е. производит фотохимическое или фотобиологическое действие.
Так как фотоны в зависимости от частоты (т. е. от длины волны света) обладают, как мы убедились, различной энергией, то и поглощаются по-разному. Как же оценить это поглощение количественно?
Способность любого вещества поглощать свет характеризуется его показателем поглощения.
Направим на тонкий слой вещества луч света. Количество фотонов (ΔN), поглощенных этим слоем, будет пропорционально его толщине (Δz) и числу N фотонов, падающих на этот слой: ΔN = ϰNΔz.
Коэффициент пропорциональности ϰ в этой формуле зависит только от поглощающих свойств данного вещества и носит название показателя поглощения. С физической точки зрения он равен вероятности того, что фотон, пробегая в веществе слой единичной толщины, будет поглощен в этом слое.
Измеряется показатель поглощения в единицах, обратных единицам длины: см-1, м-1, км-1. В оптике моря используют м-1.
Показатель поглощения является спектральной величиной, т. е. его значения зависят от длины волны света. Способность воды избирательно поглощать свет различных длин волн называется селективностью.
Насколько отличаются показатели поглощения (в пределах видимой области спектра) у дистиллированной воды, видно из следующих данных:
Цвет | Фиолетовый | Синий | Зеленый | Оранжевый | Красный | ||
НМ | 400 | 450 | 500 | 550 | 600 | 650 | 700 |
м-1 | 0,0050 | 0,0013 | 0,0025 | 0,015 | 0,091 | 0,15 | 0,26 |
Как видим, поглощение красного света в сотни раз больше, чем сине-зеленого. Но приведенные показатели характеризуют поглощение света собственно молекулами воды. В морской воде это процесс гораздо более сложный, ибо фотоны поглощаются не только молекулами, но и растворенными в воде веществами органического и неорганического происхождения.
В ней растворены практически все известные нам химические элементы. Профессор Н. Н. Зубов писал: «…если некоторые из них (элементов. — Авт.) до сих пор не обнаружены, то это надо приписать скорее неточности методов определения, чем действительному их отсутствию»[6].
Больше всего в морской воде содержится солей натрия, калия и магния. Морская вода обладает одним удивительным свойством: постоянством своего солевого состава. Концентрация растворенных солей в океане может в зависимости от местных условий меняться в довольно широких пределах, но соотношение между основными солями остается неизменным.
Чем же отличается (с точки зрения поглощающих свойств) морская вода от дистиллированной?
Еще в 1927 г. очень интересные измерения проделал американский ученый Е. Хальбарт. Справедливо считая, что поглощение в морской воде обусловлено как самой водой, так и растворенными в ней солями, он исследовал молекулярные коэффициенты поглощения NaCl, KCl, MgCl2, MgSO4 и CaSO4. В результате измерений Хальбарт установил; что в видимой области спектра поглощение дистиллированной водой мало отличается от поглощения в хорошо отфильтрованной чистой морской воде. А вот в ультрафиолетовой области спектра растворенные соли резко увеличивают показатель поглощения.
В море кроме солей растворены еще и органические вещества, которые увеличивают поглощение и меняют (по сравнению с дистиллированной) селективность морской воды. Особенно это присуще водам, содержащим большое количество таинственного «желтого вещества».
Последние исследования ученых и. главным образом фундаментальные работы немецкого океанолога К. Калле показали, что «желтое вещество» состоит из свободных углеводов и свободных аминокислот, образующихся в результате распада органических веществ, конечный продукт которого — гуминовые соединения, имеющие желтый цвет и весьма устойчиво сохраняющиеся в водах моря. Эти соединения содержатся во всех морях и океанах, но особенно много их в районах высокой продуктивности, богатых органическими веществами. Присутствие «желтого вещества» значительно изменяет спектральную кривую поглощения морской воды (рис. 3). У вод Балтийского моря, богатых «желтым веществом», показатель поглощения выше, чем у чистых вод, а его минимум смещен в более длинноволновую часть спектра.
Эта разница в значениях показателей поглощения и в их спектральном распределении может заметно сказаться на температуре поверхностного слоя моря. При прочих равных условиях (количество упавшей энергии, интенсивность перемешивания и т. п.) воды с повышенной концентрацией «желтого вещества» будут лучше прогреты, чем такой же слой чистых океанских вод. Грубо говоря, мутные воды более теплые, чем чистые. Если одно и то же количество световой энергии будет поглощено, т. е. в значительной степени преобразовано в тепловую, в тонком слое мутной воды, то этот слой будет нагрет сильнее, чем более толстый слой чистой воды, поглотивший ту же энергию.
Наряду с другими факторами данное явление определяет более бурное протекание процесса фотосинтеза, т. е. образования фитопланктона, в водах с повышенным содержанием «желтого вещества». Это один из примеров взаимообусловленности процессов, происходящих в море.
Таким образом, поглощение света в морской воде вызывается как поглощением молекулами самой воды, так и растворенными в ней неорганическими и органическими веществами. Мы уже говорили о том, что в видимой области спектра неорганические соли оказывают слабое влияние на поглощение света; следовательно, различие в спектральных кривых поглощения морской воды может возникать только за счет различия в количестве и характере растворенного в воде органического вещества[7].
Показатель поглощения — одна из важнейших гидрооптических характеристик, знание которой необходимо для различных расчетов, связанных с распространением света в море. А вот как его измерить?
Рис. 3. Спектральные кривые показателей поглощения дистиллированной воды (1), отфильтрованной морской воды (2), естественных вод Атлантического океана (3) и Балтийского моря (4)
Рис. 4. Спектральные кривые ослабления света морской водой, измеренные различными приборами:
1 — обычным спектрофотометром (рассеяние совершенно скрадывает эффект поглощения);
2 — с помощью молочного стекла (хорошо видны пики поглощения хлорофилла у 440 и 675 нм)
Еще в конце XIX в. появились более или менее точные данные о поглощающей способности воды. Так, Г. Гюфнер и Е. Альбрехт, направляя солнечный свет в трубки с водой, определили ослабление водой различных участков видимого спектра. Затем на дистиллированной и озерной воде выполнил измерения О. Ауфзесс. Эти определения долгое время считались классическими. Данные об ослаблении света водой в инфракрасной области спектра были получены Ашкинассом. В диапазоне длин волн от 360 до 800 нм тщательные исследования провел Джемс.
Все указанные измерения, как правило, производились на пробах воды, залитых в трубки со стеклянными торцевыми крышками. Трубки затем помещались в различного типа спектрофотометры. Луч света определенной длины волны пропускался через слой воды известной толщины. По отношению интенсивности света, прошедшего через воду, к интенсивности падающего света вычислялся спектральный показатель поглощения.
Здесь необходимо сделать одну оговорку. Мы уже указывали на то, что свет в воде ослабляется под воздействием двух процессов: поглощения и рассеяния. Поэтому при измерениях поглощения описанными методами надо было быть уверенным, что свет, проходивший через трубку с водой, только поглощался, а не рассеивался.
Как известно, спектральный анализ широко применяется при исследовании содержания и состава различных веществ. Измерив спектр поглощения исследуемой системы (т. е. зависимость показателя поглощения от длины волны света), по положению максимумов и минимумов поглощения в этом спектре можно судить о составе и количестве присутствующих веществ. К морской воде, где рассеяние, как правило, значительно превышает поглощение, обычные методы спектрального анализа неприменимы. Ведь к потерям света в результате поглощения обязательно добавятся потери из-за рассеяния, которые могут значительно исказить истинную спектральную зависимость поглощения (рис. 4). Определение истинного поглощения в рассеивающей среде (в частности, в морской воде) — серьезная проблема, не решенная до конца и в настоящее время. Измеряя поглощение в лабораториях, исследователи пускаются на различные хитрости, чтобы собрать в приемнике вместе с прошедшим и весь рассеянный свет. Один из таких методов был предложен японским профессором Сибата в 1954 г. Между приемником и кюветой помещают рассеивающее опаловое стекло, а стенки кюветы покрывают зеркально отражающим слоем с целью увеличить долю рассеянного света, попадающего в приемник. Как видно из рис. 4, этот метод позволяет в значительной степени избавиться от вредного влияния рассеяния.